【題目】直角三角形三邊垂直平分線的交點(diǎn)位于三角形的( 。

A.三角形內(nèi)B.三角形外C.斜邊的中點(diǎn)D.不能確定

【答案】C

【解析】

垂直平分線的交點(diǎn)是三角形外接圓的圓心,由此可得出此交點(diǎn)在斜邊中點(diǎn).

∵直角三角形的外接圓圓心在斜邊中點(diǎn),

∴直角三角形三邊垂直平分線的交點(diǎn)位于三角形的斜邊中點(diǎn).

故選:C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠C=90°AC=6,BC=8,DAB上不與AB重合的一個(gè)動(dòng)點(diǎn),過點(diǎn)D分別作DE⊥AC于點(diǎn)EDF⊥BC于點(diǎn)F,則線段EF的最小值為(   )

A. 3 B. 4 C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,CE平分∠ACD,AE平分∠BAC,∠EAC+∠ACE=90°

(1)請判斷ABCD的位置關(guān)系并說明理由;

(2)如圖2,當(dāng)∠E=90°保持不變,移動(dòng)直角頂點(diǎn)E,使∠MCE=∠ECD,當(dāng)直角頂點(diǎn)E點(diǎn)移動(dòng)時(shí),問∠BAE∠MCD是否存在確定的數(shù)量關(guān)系?并說明理由;

(3)如圖3,P為線段AC上一定點(diǎn),點(diǎn)Q為直線CD上一動(dòng)點(diǎn),當(dāng)點(diǎn)Q在射線CD上運(yùn)動(dòng)時(shí)(點(diǎn)C除外)∠CPQ+∠CQP∠BAC有何數(shù)量關(guān)系?猜想結(jié)論并說明理由.當(dāng)點(diǎn)Q在射線CD的反向延長線上運(yùn)動(dòng)時(shí)(點(diǎn)C除外)∠CPQ+∠CQP∠BAC有何數(shù)量關(guān)系?直接寫出猜想結(jié)論,不需說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一臺電視機(jī)原價(jià)是2500元,現(xiàn)按原價(jià)的8折出售,則購買a臺這樣的電視機(jī)需要元.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知一次函數(shù)y=x+3的圖象與x軸、y軸分別交于A、B兩點(diǎn),拋物線過A、B兩點(diǎn),且與x軸交于另一點(diǎn)C.

(1)求b、c的值;

(2)如圖1,點(diǎn)D為AC的中點(diǎn),點(diǎn)E在線段BD上,且BE=2ED,連接CE并延長交拋物線于點(diǎn)M,求點(diǎn)M的坐標(biāo);

(3)將直線AB繞點(diǎn)A按逆時(shí)針方向旋轉(zhuǎn)15°后交y軸于點(diǎn)G,連接CG,如圖2,P為ACG內(nèi)以點(diǎn),連接PA、PC、PG,分別以AP、AG為邊,在他們的左側(cè)作等邊APR,等邊AGQ,連接QR

①求證:PG=RQ;

②求PA+PC+PG的最小值,并求出當(dāng)PA+PC+PG取得最小值時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若一個(gè)正數(shù)的兩個(gè)平方根分別是2a﹣1和﹣a+5,這個(gè)正數(shù)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,直線l1 經(jīng)過A,B兩點(diǎn),直線l2的表達(dá)式為,且與x軸交于點(diǎn)D,兩直線相交于點(diǎn)C.

(1)求直線l1的表達(dá)式;

(2)求△ADC的面積;

(3)在直線l1上存在異于點(diǎn)C的另一點(diǎn)P,使得△ADP與△ADC的面積相等,請直接寫出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】以下四組數(shù)中,不是勾股數(shù)的是(  )

A.8,57B.5,12,13C.20,2129D.3n,4n,5nn為正整數(shù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一組數(shù)據(jù)9,2,3,一3,1的極差是

查看答案和解析>>

同步練習(xí)冊答案