【題目】如圖所示,一幢樓房AB背后有一臺(tái)階CD,臺(tái)階每層高0.2米,且AC=14.5米,NF=0.2米.設(shè)太陽光線與水平地面的夾角為α,當(dāng)α=56.3°時(shí),測(cè)得樓房在地面上的影長(zhǎng)AE=10米,現(xiàn)有一只小貓睡在臺(tái)階的NF這層上曬太陽.
(1)求樓房的高度約為多少米?
(2)過了一會(huì)兒,當(dāng)α=45°時(shí),問小貓能否還曬到太陽?請(qǐng)說明理由.(參考數(shù)據(jù):sin56.3°≈0.83,cos56.3°≈0.55,tan56.3°≈1.5)
【答案】(1)15米;(2)小貓不能曬到太陽.
【解析】試題分析:(1)在Rt△ABE中,由tan56.3°=,即可求出AB=10tan56.3°,進(jìn)而得出答案;
(2)假設(shè)沒有臺(tái)階,當(dāng)α=45°時(shí),從點(diǎn)B射下的光線與地面AD的交點(diǎn)為點(diǎn)P,與MC的交點(diǎn)為點(diǎn)Q,由∠BPA=45°,可得HQ=PH=0.3m,進(jìn)而判斷即可.
試題解析:(1)當(dāng)α=56.3°時(shí),在Rt△ABE中, ∵tan56.3°=≈1.50,
∴AB=10tan56.3°≈10×1.50=15(m),
即樓房的高度約為15米;
(2)當(dāng)α=45°時(shí),小貓不能再曬到太陽,理由如下:
假設(shè)沒有臺(tái)階,當(dāng)α=45°時(shí),從點(diǎn)B射下的光線與地面AD交于點(diǎn)P,此時(shí)的影長(zhǎng)AP=AB≈15m,
設(shè)MN的延長(zhǎng)線交AD于點(diǎn)H,
∵AC≈14.5m,NF=0.2m,
∴PH=AP﹣AC﹣CH≈15﹣14.5﹣0.2=0.3(m),
設(shè)直線MN與BP交于點(diǎn)Q,則HQ=PH=0.3m,
∴HQ=PH=0.3m,
∴點(diǎn)Q在MN上,
∴大樓的影子落在MN這個(gè)側(cè)面上,
∴小貓不能曬到太陽.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)學(xué)課上,張老師舉了下面的例題:
例1 等腰三角形中,,求的度數(shù).(答案:)
例2 等腰三角形中,,求的度數(shù).(答案:或或)
張老師啟發(fā)同學(xué)們進(jìn)行變式,小敏編了如下一題:
變式 等腰三角形中,,求的度數(shù).
(1)請(qǐng)你解答以上的變式題.
(2)解(1)后,小敏發(fā)現(xiàn),的度數(shù)不同,得到的度數(shù)的個(gè)數(shù)也可能不同.如果在等腰三角形中,設(shè),當(dāng)有三個(gè)不同的度數(shù)時(shí),請(qǐng)你探索的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,O為直線AB上一點(diǎn),過點(diǎn)O作射線OC,∠AOC=30°,將一直角三角板(∠M=30°)的直角項(xiàng)點(diǎn)放在點(diǎn)O處,一邊ON在射線OA上,另一邊OM與OC都在直線AB的上方.
(1)將圖1中的三角板繞點(diǎn)O以每秒5°的速度沿逆時(shí)針方向旋轉(zhuǎn)一周.如圖2,經(jīng)過t秒后,ON落在OC邊上,則t= 秒(直接寫結(jié)果).
(2)在(1)的條件下,若三角板繼續(xù)轉(zhuǎn)動(dòng),同時(shí)射線OC也繞O點(diǎn)以每秒10°的速度沿逆時(shí)針方向旋轉(zhuǎn)一周,當(dāng)OC轉(zhuǎn)動(dòng)9秒時(shí),求∠MOC的度數(shù).
(3)在(2)的條件下,它們繼續(xù)運(yùn)動(dòng)多少秒時(shí),∠MOC=35°?請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB∥CD,直線 EF 分別交 AB、CD于 點(diǎn) E、F,EG 平分∠AEF,
(1)求證:△EGF 是等腰三角形.
(2)若∠1=40°,求∠2 的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】黃巖島是我國(guó)南沙群島的一個(gè)小島,漁產(chǎn)豐富.一天某漁船離開港口前往該海域捕魚.捕撈一段時(shí)間后,發(fā)現(xiàn)一外國(guó)艦艇進(jìn)入我國(guó)水域向黃巖島駛來,漁船向漁政部門報(bào)告,并。立即返航.漁政船接到報(bào)告后,立即從該港口出發(fā)趕往黃巖島.下圖是漁政船及漁船與港口的距離s和漁船離開港口的時(shí)間t之間的函數(shù)圖象.(假設(shè)漁船與漁政船沿同一航線航行)
(1)直接寫出漁船離開港口的距離s和漁船離開港口的時(shí)間t之間的函數(shù)關(guān)系式
(2)求漁船與漁政船相遇對(duì),兩船與黃巖島的距離、
(3在漁政船駛往黃巖島的過程中,求漁船從港口 出發(fā)經(jīng)過多長(zhǎng)時(shí)間與漁政船相距30海里?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,點(diǎn)F,D,E分別是邊AB,BC,AC上的點(diǎn),且AD,BE,CF相交于點(diǎn)O,若點(diǎn)O是△ABC的重心,則以下結(jié)論:①線段AD,BE,CF是△ABC的三條角平分線;②△ABD的面積是△ABC面積的一半;③圖中與△ABD面積相等的三角形有5個(gè);④△BOD的面積是△ABD面積的;⑤AO=2OD其中一定正確結(jié)論有( )
A.①③④⑤B.②③④⑤C.③④⑤D.①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市地鐵二號(hào)線某工段需要開挖土石方,計(jì)劃每小時(shí)挖掘土石方700m3,現(xiàn)決定向一大型機(jī)械租賃公司租用甲、乙兩種型號(hào)的挖掘機(jī)來完成這項(xiàng)工作,租賃公司提供的挖掘機(jī)有關(guān)信息如下表:
租金(單位:元/臺(tái)·時(shí)) | 土石方量(單位:m3/臺(tái)·時(shí)) | |
甲型挖掘機(jī) | 90 | 50 |
乙型挖掘機(jī) | 100 | 60 |
⑴ 若租用甲、乙兩種型號(hào)的挖掘機(jī)共13臺(tái),恰好完成每小時(shí)的挖掘量,則甲、乙兩種型號(hào)的挖掘機(jī)各需多少臺(tái)?
⑵ 如果每小時(shí)支付的租金不超過1200元,又恰好完成每小時(shí)的挖掘量,那么共有哪幾種不同的租用方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】古希臘著名的畢達(dá)哥拉斯學(xué)派把1、3、6、10… 這樣的數(shù)稱為“三角形數(shù)”,而把1、4、9、16… 這樣的數(shù)稱為“正方形數(shù)”.從圖中可以發(fā)現(xiàn),任何一個(gè)大于1的“正方形數(shù)”都可以看作兩個(gè)相鄰“三角形數(shù)”之和.則下列符合這一規(guī)律的等式是( )
…
A.20=4+16B.25=9+16C.36=15+21D.49=20+29
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2).動(dòng)點(diǎn)P從點(diǎn)A處出發(fā),并按A﹣B﹣C﹣D﹣A﹣B…的規(guī)律在四邊形ABCD的邊上以每秒1個(gè)單位長(zhǎng)的速度運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為t秒.若t=2018秒,則點(diǎn)P所在位置的點(diǎn)的坐標(biāo)是_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com