某職業(yè)學校三名學生到某超市參加了社會實踐活動,在活動中他們參與了某種水果的銷售工作,已知該水果的進價為8元/千克,下面是他們在活動結束后的對話。
A:如果以10元/千克的價格銷售,那么每天可售出300千克.
B:如果以13元/千克的價格銷售,那么每天可獲取利潤750元.
C:通過調查驗證,我發(fā)現(xiàn)每天的銷售量y(千克)與銷售單價x(元)之間存在一次函數(shù)關系.
(1)求y(千克)與x(元)(x>0)的函數(shù)關系式;
(2)當銷售單價為何值時,該超市銷售這種水果每天獲取的利潤達到600元?【利潤=銷售量×(銷售單價-進價)】
(3)一段時間后,發(fā)現(xiàn)這種水果每天的銷售量均不低于225千克.則此時該超市銷售這種水果每天獲取的最大利潤是多少?
(1)y=-50x+800(x>0);(2)10或14元;(3)787.5元.
解析試題分析:(1)以10元/千克的價格銷售,那么每天可售出300千克;以13元/千克的價格銷售,那么每天可獲取利潤750元.就相當于直線過點(10,300),(13,150),然后列方程組解答即可.
(2)根據(jù)利潤=銷售量×(銷售單價-進價)寫出解析式,W=(-50x+800)(x-8)=600求出即可;
(3)由二次函數(shù)的性質以及利用配方法求最大值,自變量的取值范圍解答這一問題.
試題解析:(1)當銷售單價為13元/千克時,銷售量為:千克
設y與x的函數(shù)關系式為:y=kx+b(k≠0)
把(10,300),(13,150)分別代入得:
,
解得,
故y與x的函數(shù)關系式為:y=-50x+800(x>0)
(2)設每天水果的利潤w元,
∵利潤=銷售量×(銷售單價-進價)
∴W=(-50x+800)(x-8)=600
0=-50(x-12)2+200
解得:x1=10,x2=14.
∴當銷售單價為10或14元時,每天可獲得的利潤是600元.
(3)W=(-50x+800)(x-8)=-50x2+1200x-6400=-50(x-12)2+800
又∵水果每天的銷售量均低于225kg,水果的進價為8元/千克,
∴-50x+800≥225,
∴x≤11.5,
∴當x=11.5時,W最大=787.5(元).
答:此時該超市銷售這種水果每天獲取的利潤最大是787.5元.
考點: 二次函數(shù)的應用.
科目:初中數(shù)學 來源: 題型:解答題
如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于A、B兩點,其中A點坐標為(-1,0), 點C(0,5),點D(1,8)在拋物線上,M為拋物線的頂點.求
(1)拋物線的解析式;
(2)求△MCB的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
如圖,已知△OAB的頂點A(-6,0),B(0,2),O是坐標原點, 將△OAB繞點O按順時針旋轉90°,得到△ODC.
(1)寫出C點的坐標為 ;
(2)設過A,D,C三點的拋物線的解析式為,求其解析式?
(3)證明AB⊥BE.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
如圖,在平行四邊形ABCD中,AB=5,BC=10,F(xiàn)為AD的中點,CE⊥AB于E,設∠ABC=α(60°≤α<90°).
(1)當α=60°時,求CE的長;
(2)當60°<α<90°時,
①是否存在正整數(shù)k,使得∠EFD=k∠AEF?若存在,求出k的值;若不存在,請說明理由.
②連接CF,當CE2-CF2取最大值時,求tan∠DCF的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
已知二次函數(shù)y=ax2+bx+c的圖像經過A(-1,0),B(3,0),C(0,-3)三點,求這個二次函數(shù)的解析式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
近期,海峽兩岸關系的氣氛大為改善.大陸相關部門對原產臺灣地區(qū)的15種水果實施進口零關稅措施,擴大了臺灣水果在大陸的銷售.某經銷商銷售了臺灣水果鳳梨,根據(jù)以往銷售經驗,每天的售價與銷售量之間有如下關系:
每千克售價(元) | 40 | 39 | 38 | 37 | … | 30 |
每天銷量(千克) | 60 | 65 | 70 | 75 | … | 110 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
某區(qū)政府大力扶持大學生創(chuàng)業(yè).李剛在政府的扶持下投資銷售一種進價為每件20元的護眼臺燈.銷售過程中發(fā)現(xiàn),每月銷售量y(件)與銷售單價x(元)之間的關系可近似的看作一次函數(shù):y=-10x+500.
(1)設李剛每月獲得利潤為w(元),當銷售單價定為每臺多少元時,每月可獲得最大利潤?
(2)如果李剛想要每月獲得2000元的利潤,那么銷售單價應定為多少元?
(3)根據(jù)物價部門規(guī)定,這種護眼臺燈的銷售單價不得高于32元,如果李剛想要每月獲得的利潤不低于2000元,那么他每月的成本最少需要多少元?(成本=進價×銷售量)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
如圖,拋物線y=x2-2x-3與x軸交于A、B兩點,與y軸交于點C.
(1)點A的坐標為 點B的坐標為 ,點C的坐標為 ;
(2)設拋物線y=x2-2x-3的頂點坐標為M,求四邊形ABMC的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
已知二次函數(shù)y=x2-2x-3的圖象與x軸交于A、B兩點(A在B的左側),與y軸交于點C,頂點為D.
(1)求點A、B、C、D的坐標,并在下面直角坐標系中畫出該二次函數(shù)的大致圖象;
(2)說出拋物線y=x2-2x-3可由拋物線y=x2如何平移得到?
(3)求四邊形OCDB的面積.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com