【題目】已知:如圖,在長方形ABCD中,AB=4,AD=6.延長BC到點E,使CE=2,連接DE,動點P從點B出發(fā),以每秒2個單位的速度沿BC﹣CD﹣DA向終點A運動,設點P的運動時間為t秒,當t的值為_____秒時,ABPDCE全等.

【答案】17

【解析】

分點P在線段BC上和點P在線段AD上兩種情況解答即可

設點P的運動時間為t秒,則BP=2t,

當點P在線段BC上時,

∵四邊形ABCD為長方形,

∴AB=CD,∠B=∠DCE=90°,

此時有△ABP≌△DCE,

∴BP=CE,即2t=2,解得t=1;

當點P在線段AD上時,

∵AB=4,AD=6,

∴BC=6,CD=4,

∴AP=BC+CD+DA=6+4+6=16,

∴AP=16-2t,

此時有△ABP≌△CDE,

∴AP=CE,即16-2t=2,解得t=7;

綜上可知當t1秒或7秒時,△ABP和△CDE全等.

故答案為:17.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,ADBC,ECD的中點,連接AE、BE,BEAE,延長AEBC的延長線于點F.

求證:(1)FC=AD;

(2)AB=BC+AD.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,把正六邊形各邊按同一方向延長,使延長的線段與原正六邊形的邊長相等,順次連接這六條線段外端點可以得到一個新的正六邊形,…,重復上述過程,經過2018次后,所得到的正六邊形邊長是原正六邊形邊長的(
A.( 2016
B.( 2017
C.( 2018
D.( 2019

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,Rt△ABC中,∠C=90°,∠A=30°.

(1)作線段AB的垂直平分線DE,垂足為點E,交AC于點D,要求用尺規(guī)作圖,保留作圖痕跡,標注有關字母,不要求寫作法和證明;

(2)連接BD,直接寫出∠CBD的度數(shù);

(3)如果△BCD的面積為4,請求出△BAD的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(題文)如圖1,在四邊形ABCD中,DC∥ABAD=BC,BD平分∠ABC

1)求證:AD=DC

2)如圖2,在上述條件下,若∠A=∠ABC=60°,過點DDE⊥AB,過點CCF⊥BD,垂足分別為EF,連接EF.判斷△DEF的形狀并證明你的結論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在數(shù)軸上,點A表示3,點B表示-.

(1)數(shù)軸是什么圖形?

(2)數(shù)軸上原點O左邊的部分(包括原點)是什么圖形?怎樣表示?

(3)射線OB上的點表示什么數(shù)?端點表示什么數(shù)?

(4)數(shù)軸上表示不小于-且不大于3的部分是什么圖形?怎樣表示?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知直線y=kx+b經過點A(0,6),且平行于直線y=-2x.

1求該函數(shù)的解析式,并畫出它的圖象;

2如果這條直線經過點P(m,2),求m的值;

3若O為坐標原點,求直線OP的解析式;

4求直線y=kx+b和直線OP與坐標軸所圍成的圖形的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】從邊長為 a 的正方形內去掉一個邊長為 b 的小正方形(如圖1),然后將剩余部分剪拼成一個矩形(如圖2),上述操作所能驗證的等式是(  。

A. (a-b)2=a2-2ab+b2 B. a2+ab=a (a+b) C. (a+b)2=a2+2ab+b2 D. a2-b2=(a+b)(a-b)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,兩直線AB,CD相交于點O,已知OE平分BOD,且AOC:AOD=3:7,

1DOE的度數(shù);

2若OFOE,求COF的度數(shù)

查看答案和解析>>

同步練習冊答案