【題目】某商品經銷店欲購進A、B兩種紀念品,用160元購進的A種紀念品與用240元購進的B種紀念品的數(shù)量相同,每件B種紀念品的進價比A種紀念品的進價貴10元.
(1)求A、B兩種紀念品每件的進價分別為多少元?
(2)若該商店A種紀念品每件售價24元,B種紀念品每件售價35元,這兩種紀念品共購進1 000件,這兩種紀念品全部售出后總獲利不低于4 900元,求A種紀念品最多購進多少件.

【答案】
(1)解:設A種紀念品每件的進價為x元,則B種紀念品每件的進價(x+10)元,

由題意得: =

解得:x=20,

經檢驗:x=20是原分式方程的解,

x+10=30,

答:A種紀念品每件的進價為20元,則B種紀念品每件的進價30元;


(2)解:設A種紀念品購進a件,由題意得:

(24﹣20)a+(35﹣30)(1000﹣a)≥4900,

解得:a≤100,

∵a為整數(shù),

∴a的最大值為100.

答:A種紀念品最多購進100件.


【解析】(1)由“數(shù)量相同”,可用x的分式分別表示二者的數(shù)量,列出分式方程,檢驗,求出兩種紀念品每件的進價;(2)“總獲利不低于4 900元”列出不等式,求出a 的范圍,此范圍內求出整數(shù)的最大值.
【考點精析】通過靈活運用分式方程的應用,掌握列分式方程解應用題的步驟:審題、設未知數(shù)、找相等關系列方程、解方程并驗根、寫出答案(要有單位)即可以解答此題.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在菱形ABCD中,E,F(xiàn)分別在AB,CD上,且BE=DF,EFBD相交于點O,連結AO.若∠CBD=35°,則∠DAO的度數(shù)為( 。

A. 35° B. 55° C. 65° D. 75°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校舉辦紅歌伴我成長歌詠比賽活動,參賽同學的成績分別繪制成頻數(shù)分布表和頻數(shù)分布直方圖(均不完整)如圖

分數(shù)段

頻數(shù)

頻率

80≤x<85

9

0.15

85≤x<90

m

0.45

90≤x<95

95≤x<100

6

n

(1)求m,n的值分別是多少;

(2)請在圖中補全頻數(shù)分布直方圖;

(3)比賽成績的中位數(shù)落在哪個分數(shù)段?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知2A型車和1B型車載滿貨物一次可運貨10.1A型車和2B型車載滿貨物一次可運貨11.某物流公司現(xiàn)有31噸貨物,計劃同時租用A型車a輛和B型車b,一次運完,且每輛車都滿載貨物.根據(jù)以上信息解答下列問題:

11A型車和1B型車載滿貨物一次分別可運貨物多少噸?

2請幫助物流公司設計租車方案

3A型車每輛車租金每次100元,B型車每輛車租金每次120.請選出最省錢的租車方案,并求出最少的租車費.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】數(shù)學課上,張老師舉了下面的例題:

例1 等腰三角形ABC中,∠A=110°,求∠B的度數(shù).

例2 等腰三角形ABC中,∠A=40°,求∠B的度數(shù).

張老師啟發(fā)同學們進行變式,小敏編了如下一題:

變式 等腰三角形ABC中,∠A=80°,求∠B的度數(shù).

(1)請你解答以上的變式題.

(2)解(1)后,小敏發(fā)現(xiàn),∠A的度數(shù)不同,得到∠B的度數(shù)的個數(shù)也可能不同,如果在等腰三角形ABC中,設∠A=x°,當∠B有三個不同的度數(shù)時,請你探索x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平行四邊ABCD中,AD=2AB,FAD的中點,作CE⊥AB,垂足E在線段AB上,連接EF、CF,則下列結論中一定成立的是 (把所有正確結論的序號都填在橫線上)

1∠DCF=∠BCD,(2EF=CF;(3SΔBEC=2SΔCEF;(4∠DFE=3∠AEF

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在某市舉辦的讀好書,講禮儀活動中,東華學校積極行動,各班圖書角的新書、好書不斷增多,除學校購買外,還有師生捐獻的圖書.下面是七年級(1)班全體同學捐獻圖書的情況統(tǒng)計圖:

請你根據(jù)以上統(tǒng)計圖中的信息,解答下列問題:

1)該班有學生多少人?

2)補全條形統(tǒng)計圖;

3)七(1)班全體同學所捐獻圖書的中位數(shù)和眾數(shù)分別是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在菱形ABCD中,AB=2,∠DAB=60°,EAD邊的中點,點MAB邊上一動點(不與點A重合),延長ME交射線CD于點N,連接MD,AN.

1)求證:四邊形AMDN是平行四邊形;

2)填空:AM的值為 時,四邊形AMDN是矩形;AM的值為 時,四邊形AMDN是菱形。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖所示,菱形ABCD中,E,F(xiàn)分別是CB,CD上的點,且BE=DF.

(1)試說明:AE=AF;

(2)若∠B=60°,點E,F(xiàn)分別為BC和CD的中點,試說明:△AEF為等邊三角形.

查看答案和解析>>

同步練習冊答案