【題目】如圖,某中學有一塊四邊形的空地ABCD,學校計劃在空地上種植草皮,經測量∠A=90°,AB=3m,BC=12m,CD=13m,DA=4m,若每平方米草皮需要200元,問學校需要投入多少資金買草皮?
【答案】7200
【解析】試題分析:仔細分析題目,需要求得四邊形的面積才能求得結果.連接BD,在直角三角形ABD中可求得BD的長,由BD、CD、BC的長度關系可得三角形DBC為一直角三角形,DC為斜邊;由此看,四邊形ABCD由Rt△ABD和Rt△DBC構成,則容易求解.
試題解析:
連接BD
在Rt△ABD中,BD2=AB2+AD2=32+42=52,
在△CBD中,CD2=132,BC2=122,而122+52=132,即BC2+BD2=CD2,
∴∠DBC=90°,
S四邊形ABCD=S△BAD+S△DBC=AD·AB+DB· BC=×4×3+×5×12=36
所以需費用36×200=7200(元)
科目:初中數學 來源: 題型:
【題目】如圖,在四邊形ABCD中,AB=CD,BF=DE,AE⊥BD,CF⊥BD,垂足分別為E,F.
(1)求證:△ABE≌△CDF;
(2)若AC與BD交于點O,求證:AO=CO.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知在平面直角坐標系中,四邊形ABCD是長方形,∠A=∠B=∠C=∠D=90°,AB∥CD,AB=CD=8cm,AD=BC=6cm,D點與原點重合,坐標為(0,0)
(1)寫出點B的坐標;
(2)動點P從點A出發(fā)以每秒3個單位長度的速度向終點B勻速運動,動點Q從點C出發(fā)以每秒4個單位長度的速度沿射線CD方向勻速運動,若P,Q兩點同時出發(fā),設運動時間為t,當t為何值時,PQ∥BC;
(3)在Q的運行過程中,當Q運動到什么位置時,使△ADQ的面積為9,求此時Q點的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】來自中國、美國、立陶宛、加拿大的四國青年男籃巔峰爭霸賽于2014年3月25日-27日在我縣體育館舉行。小明來到體育館看球賽,進場時,發(fā)現門票還在家里,此時離比賽開始還有25分鐘,于是立即步行回家取票.同時,他父親從家里出發(fā)騎自行車以他3倍的速度給他送票,兩人在途中相遇,相遇后小明立即坐父親的自行車趕回體育館.如圖中線段AB、OB分別表示父、子倆送票、取票過程中,離體育館的路程S(米)與所用時間t(分鐘)之間的圖象,結合圖象解答下列問題(假設騎自行車和步行的速度始終保持不變):
(1)從圖中可知,小明家離體育館 米,父子倆在出發(fā)后 分鐘相遇.
(2)求出父親與小明相遇時距離體育館還有多遠?
(3)小明能否在比賽開始之前趕回體育館?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,某汽車在路面上朝正東方向勻速行駛,在A處觀測到樓H在北偏東60°方向上,行駛1小時后到達B處,此時觀測到樓H在北偏東30°方向上,那么該車繼續(xù)行駛( )分鐘可使汽車到達離樓H距離最近的位置.
A.60
B.30
C.15
D.45
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知在平面直角坐標系中,四邊形ABCD是長方形,∠A=∠B=∠C=∠D=90°,AB∥CD,AB=CD=8cm,AD=BC=6cm,D點與原點重合,坐標為(0,0)
(1)寫出點B的坐標;
(2)動點P從點A出發(fā)以每秒3個單位長度的速度向終點B勻速運動,動點Q從點C出發(fā)以每秒4個單位長度的速度沿射線CD方向勻速運動,若P,Q兩點同時出發(fā),設運動時間為t,當t為何值時,PQ∥BC;
(3)在Q的運行過程中,當Q運動到什么位置時,使△ADQ的面積為9,求此時Q點的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知正方形ABCD的邊長為2,E為BC邊的延長線上一點,CE=2,聯結AE,與CD交于點F,聯結BF并延長與線段DE交于點G,則BG的長為 .
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com