【題目】已知正方形ABCD的邊長(zhǎng)為2,E為BC邊的延長(zhǎng)線上一點(diǎn),CE=2,聯(lián)結(jié)AE,與CD交于點(diǎn)F,聯(lián)結(jié)BF并延長(zhǎng)與線段DE交于點(diǎn)G,則BG的長(zhǎng)為 .
【答案】.
【解析】
試題分析:利用全等三角形的判定AAS得出△ADF≌△ECF,進(jìn)而得出FG是△DCP的中位線,得出,再利用勾股定理得出BG的長(zhǎng)即可:
如圖,過(guò)點(diǎn)C作CP∥BG,交DE于點(diǎn)P.
∵BC=CE=2,∴CP是△BEG的中位線.∴P為EG的中點(diǎn).
又∵AD=CE=1,AD∥CE,
∴在△ADF和△ECF中,∠AFD=∠EFC,∠ADC=∠FCE,AD=CE,
∴△ADF≌△ECF(AAS).∴CF=DF.
又CP∥FG,∴FG是△DCP的中位線.∴G為DP的中點(diǎn).
∵CD=CE=2,∴DE=.
∴.
連接BD,
易知∠BDC=∠EDC=45°,∴∠BDE=90°.
又∵BD=
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某中學(xué)有一塊四邊形的空地ABCD,學(xué)校計(jì)劃在空地上種植草皮,經(jīng)測(cè)量∠A=90°,AB=3m,BC=12m,CD=13m,DA=4m,若每平方米草皮需要200元,問(wèn)學(xué)校需要投入多少資金買(mǎi)草皮?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABC中, 厘米, 厘米,點(diǎn)D為AB的中點(diǎn).如果點(diǎn)P在線段BC上以4厘米/秒的速度由B點(diǎn)向C點(diǎn)運(yùn)動(dòng),同時(shí),點(diǎn)Q在線段CA上由C點(diǎn)向A點(diǎn)運(yùn)動(dòng).當(dāng)點(diǎn)Q的運(yùn)動(dòng)速度為_______ 厘米/秒時(shí),能夠在某一時(shí)刻使△BPD與△CQP全等.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,是若干個(gè)粗細(xì)均勻的鐵環(huán)最大限度的拉伸組成的鏈條,已知鐵環(huán)粗0.5厘米,每個(gè)鐵環(huán)長(zhǎng)4.6厘米,設(shè)鐵環(huán)間處于最大限度的拉伸狀態(tài)
(1)填表:
鐵環(huán)個(gè)數(shù) | 1 | 2 | 3 | 4 |
鏈條長(zhǎng)(cm) | 4.6 | 8.2 | _____ | ____ |
(2)設(shè)n個(gè)鐵環(huán)長(zhǎng)為y厘米,請(qǐng)用含n的式子表示y;
(3)若要組成2.17米長(zhǎng)的鏈條,至少需要多少個(gè)鐵環(huán)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在ABCD中,對(duì)角線AC,BD相交于點(diǎn)O,E,F(xiàn)是對(duì)角線AC上的兩點(diǎn),當(dāng)E,F(xiàn)滿足下列哪個(gè)條件時(shí),四邊形DEBF不一定是平行四邊形( )
A. AE=CF B. DE=BF C. ∠ADE=∠CBF D. ∠AED=∠CFB
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平行四邊形ABCD中,BD=2AB,AC與BD相交于點(diǎn)O,點(diǎn)E、F、G分別是OC、OB、AD的中點(diǎn).
求證:(1)DE⊥OC;
(2)EG=EF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC繞點(diǎn)A按順時(shí)針?lè)较蛐D(zhuǎn)得到的.連接BE、CF相交于點(diǎn)D.
(1)求證:BE=CF.
(2)當(dāng)四邊形ACDE為菱形時(shí),求BD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在三角形ABC中,點(diǎn)D在線段AB上,DE∥BC交AC于點(diǎn)E,點(diǎn)F在直線BC上,作直線EF,過(guò)點(diǎn)D作直線DH∥AC交直線EF于點(diǎn)H.
(1)在如圖1所示的情況下,求證:∠HDE=∠C;
(2)若三角形ABC不變,D,E兩點(diǎn)的位置也不變,點(diǎn)F在直線BC上運(yùn)動(dòng).
①當(dāng)點(diǎn)H在三角形ABC內(nèi)部時(shí),直接寫(xiě)出∠DHF與∠FEC的數(shù)量關(guān)系;
②當(dāng)點(diǎn)H在三角形ABC外部時(shí),①中結(jié)論是否依然成立?請(qǐng)?jiān)趫D2中畫(huà)圖探究,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線AB∥CD,EF分別交AB、CD于G、F兩點(diǎn),射線FM平分∠EFD,將射線FM平移,使得端點(diǎn)F與點(diǎn)G重合且得到射線GN.若∠EFC=110°,則∠AGN的度數(shù)是( 。
A. 120° B. 125° C. 135° D. 145°
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com