【題目】如圖所示,折疊矩形ABCD的一邊AD,使點(diǎn)D落在BC邊上的點(diǎn)F處,已知AB=8,BC=10,
(1)求BF的長;
(2)求△ECF的面積.
【答案】(1)BF=6;(2)6.
【解析】
(1)因?yàn)辄c(diǎn)F為點(diǎn)D的折后的落點(diǎn),所以△AFE≌△ADE,由此可得AF=AD=10cm,在△ABF中利用勾股定理,可得BF的值,
(2)先求出DE的長,進(jìn)而求出CE的長,利用三角形的面積公式即可求出△ECF的面積.
(1)∵△ADE折疊后的圖形是△AFE,
∴△AFE≌△ADE
∴AD=AF,∠D=∠AFE,DE=EF,
∵AD=BC=10,
∴AF=AD=10,
又∵AB=8,在Rt△ABF中,根據(jù)勾股定理,得AB2+BF2=AF2,
∴82+BF2=102,
∴BF=6;
故答案為:6.
(2)則可得FC=BC-BF=10-6=4,
設(shè)EC的長為x,
∴DE=(8-x),
∵FC=4,
在Rt△EFC中,根據(jù)勾股定理,得:FC2+EC2=EF2,
∴42+x2=(8-x)2,
即16+x2=64-16x+x2,
化簡,得16x=48,
∴x=3,
故EC=3.
∴.
故答案為:6.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把下列各數(shù)按要求分類
+8.3,-4,-0.8,-,0,π,90,-|-24|,15%, 中,
負(fù)數(shù)有______________________________,
分?jǐn)?shù)有______________________________.
整數(shù)有______________________________.
有理數(shù)有______________________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A(m,6),B(n,1)在反比例函數(shù)圖象上,AD⊥x軸于點(diǎn)D,BC⊥x軸于點(diǎn)C,DC=5.線段DC上有一點(diǎn)E,當(dāng)△ABE的面積等于5時,點(diǎn)E的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長為5,點(diǎn)A的坐標(biāo)為(﹣4,0),點(diǎn)B在y軸上,若反比例函數(shù)(k≠0)的圖象過點(diǎn)C,則該反比例函數(shù)的表達(dá)式為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AD是邊BC上的中線,AE∥BC,DE∥AB,DE與AC交于點(diǎn)O,連接CE.
(1)求證:AD=EC;
(2)若∠BAC=90°,求證:四邊形ADCE是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,數(shù)軸上點(diǎn)、對應(yīng)的數(shù)分別為、,且滿足,點(diǎn)對應(yīng)點(diǎn)的數(shù)為-3.
(1)______,______;
(2)若動點(diǎn)、分別從、同時出發(fā)向右運(yùn)動,點(diǎn)的速度為3個單位長度/秒;點(diǎn)的速度為1個單位長度/秒,求經(jīng)過多長時間、兩點(diǎn)的距離為;
(3)在(2)的條件下,若點(diǎn)運(yùn)動到點(diǎn)立刻原速返回,到達(dá)點(diǎn)后停止運(yùn)動,點(diǎn)運(yùn)動至點(diǎn)處又以原速返回,到達(dá)點(diǎn)后又折返向運(yùn)動,當(dāng)點(diǎn)停止運(yùn)動點(diǎn)隨之停止運(yùn)動.求在整個運(yùn)動過程中,兩點(diǎn),同時到達(dá)的點(diǎn)在數(shù)軸上表示的數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】四邊形ABCD是正方形,AC是對角線,E是平面內(nèi)一點(diǎn),且,過點(diǎn)C作,且。連接AE、AF,M是AF的中點(diǎn),作射線DM交AE于點(diǎn)N.
(1)如圖1,若點(diǎn)E,F分別在BC,CD邊上。
求證:①;
②;
(2)如圖2,若點(diǎn)E在四邊形ABCD內(nèi),點(diǎn)F在直線BC的上方,求與的和的度數(shù)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等邊三角形的邊長為4,點(diǎn)是△ABC的中心,,的兩邊與分別相交于,繞點(diǎn)順時針旋轉(zhuǎn)時,下列四個結(jié)論正確的個數(shù)是( )
①;②;③;④周長最小值是9.
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正方形OABC的邊長為2,頂點(diǎn)A,C分別在x軸,y軸的正半軸上,點(diǎn)E是BC的中點(diǎn),F(xiàn)是AB延長線上一點(diǎn)且FB=1.
(1)求經(jīng)過點(diǎn)O,A,E三點(diǎn)的拋物線解析式;
(2)點(diǎn)P在拋物線上運(yùn)動,當(dāng)點(diǎn)P運(yùn)動到什么位置時△OAP的面積為2,請求出點(diǎn)P的坐標(biāo);
(3)在拋物線上是否存在一點(diǎn)Q,使△AFQ是等腰直角三角形?若存在直接寫出點(diǎn)Q的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com