【題目】如圖,等腰三角形△ABC中,∠BAC=120°,AB=3.
(1)求BC的長.
(2)如圖,點D在CA的延長線上,DE⊥AB于E,DF⊥BC于F,連EF.求EF的最小值.
【答案】(1)BC=;(2)EF的最小值為
【解析】
(1)過點A作AM⊥BC于點M,根據(jù)等腰三角形的性質(zhì)得∠B=30°,BM=CM,由直角三角形的性質(zhì)得BM=,進(jìn)而即可求解;
(2)連接BD,取BD的中點O,連接OE,OF,易得B,D,E,F四點共圓,從而得OEF是等邊三角形,進(jìn)而得EF=BD,由BD⊥CD時, BD的值最小,進(jìn)而即可求解.
(1)過點A作AM⊥BC于點M,
∵等腰三角形△ABC中,∠BAC=120°,AB=3,
∴∠B=(180°-120°)÷2=30°,BM=CM,
∴BM=3÷2×=,
∴BC=2 BM=2×=3;
(2)連接BD,取BD的中點O,連接OE,OF,
∵DE⊥AB于E,DF⊥BC于F,
∴在RtBDF與RtBDE中,OB=OD=OE=OF=BD,
∴B,D,E,F四點共圓,
∴∠EOF=2∠EBF=2×30°=60°,
∴OEF是等邊三角形,
∴EF=OF=BD,
∵∠C=∠EBF =30°,
∴當(dāng)BD⊥CD時,BD=BC=,此時,BD的值最小,
∴EF的最小值=BD =×=.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形的邊長為4,延長至使,以為邊在上方作正方形,延長交于,連接、,為的中點,連接分別與、交于點、.則下列結(jié)論:①;②;③;④.其中正確的結(jié)論有( )
A. 1個B. 2個C. 3個D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系中,矩形的頂點與原點重合,、分別在坐標(biāo)軸上,,,直線交,分別于點,,反比例函數(shù)的圖象經(jīng)過點,.
(1)求反比例函數(shù)的解析式;
(2)直接寫出當(dāng)時,的取值范圍;
(3)若點在軸上,且的面積與四邊形的面積相等,求點的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,AD=4,把邊CD繞點C逆時針旋轉(zhuǎn)30度得到線段CE,連接BE并延長,交AD于點F,連接DE,則線段EF的長度為________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)種植A、B、C三種樹苗一共480棵,安排80名工人一天正好完成,已知每名工人只植一種樹苗,且每名工人每天可植A種樹苗8棵;或植B種樹苗6棵,或植C種樹苗5棵.經(jīng)過統(tǒng)計,在整個過程中,每棵樹苗的種植成本如圖所示.
設(shè)種植A種樹苗的工人為x名,種植B種樹苗的工人為y名.
(1)求y與x之間的函數(shù)關(guān)系式;
(2)若種植的總成本為5600元,從植樹工人中隨機(jī)采訪一名工人,求采訪到種植C種樹苗工人的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠A=∠B,AE=BE,點D在AC邊上,∠1=∠2,AE和BD相交于點O.
(1)求證:△AEC≌△BED;
(2)若∠1=50°,則∠BDE= °.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)(操作發(fā)現(xiàn))
如圖1,將△ABC繞點A順時針旋轉(zhuǎn)50°,得到△ADE,連接BD,則∠ABD= 度.
(2)(解決問題)
①如圖2,在邊長為的等邊三角形ABC內(nèi)有一點P,∠APC=90°,∠BPC=120°,求△APC的面積.
②如圖3,在△ABC中,∠ACB=90°,AC=BC,P是△ABC內(nèi)的一點,若PB=1,PA=3,∠BPC=135°,則PC= .
(3)(拓展應(yīng)用)
如圖4是A,B,C三個村子位置的平面圖,經(jīng)測量AB=4,BC=3,∠ABC=75°,P為△ABC內(nèi)的一個動點,連接PA,PB,PC.求PA+PB+PC的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)的與的部分對應(yīng)值如下表:
-1 | 0 | 1 | 3 | |
-3 | 1 | 3 | 1 |
下列結(jié)論:①拋物線的開口向下;②其圖象的對稱軸為;③當(dāng)時,函數(shù)值隨的增大而增大;④方程有一個根大于4.其中正確的結(jié)論有( )
A.1個 B.2個 C.3個 D.4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形的邊長為,點與原點重合點在軸的正半軸上,點在軸的負(fù)半軸上,將正方形ABCD繞點A逆時針旋轉(zhuǎn)30°至正方形AB′C′D′的位置,B′C′與CD相交于點M,則點M的坐標(biāo)為__________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com