【題目】為了解本校九年級學生期末數(shù)學考試情況,在九年級隨機抽取了一部分學生的期末數(shù)學成績?yōu)闃颖,分?/span>分)、分)、分)、分)四個等級進行統(tǒng)計,并將統(tǒng)計結果繪制成如下統(tǒng)計圖,請你根據(jù)統(tǒng)計圖解答以下問題:

1)這次隨機抽取的學生共有多少人?

2)請補全條形統(tǒng)計圖.

3)這個學校九年級共有學生人,若分數(shù)為分(含分)以上為優(yōu)秀,請估計這次九年級學生期末數(shù)學考試成績?yōu)閮?yōu)秀的學生大約有多少?

【答案】140人;(2)圖見解析;(3480人.

【解析】

1)根據(jù)等級的人數(shù)和所占的百分比求出這次隨機抽取的學生數(shù);

2)用抽取的總人數(shù)乘以等級所占的百分比,從而補全統(tǒng)計圖;

3)用該校九年級的總人數(shù)乘以優(yōu)秀的人數(shù)所占的百分比,即可得出答案.

解:(1)這次隨機抽取的學生共有:(人;

2等級的人數(shù)是:人,如圖:

3)根據(jù)題意得:(人,

答:這次九年級學生期末數(shù)學考試成績?yōu)閮?yōu)秀的學生人數(shù)大約有480人.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,以等邊三角形ABCBC邊為直徑畫半圓,分別交AB、AC于點E、D,DF是圓的切線,過點FBC的垂線交BC于點G.若AF的長為2,則FG的長為

A. 4 B. C. 6 D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)yx2,當axbmyn,則下列說法正確的是(  )

A.nm1時,ba有最小值

B.nm1時,ba有最大值

C.ba1時,nm無最小值

D.ba1時,nm有最大值

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,以BC為直徑的圓分別交邊AC、ABD、E兩點,連接BD、DE.若BD平分∠ABC,則下列結論不一定成立的是( 。

A. BDAC B. AC2=2ABAE C. ADE是等腰三角形 D. BC=2AD

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線(a0)的對稱軸為直線,且拋物線經(jīng)過A(10),C(03)兩點,與軸交于點B

1)若直線經(jīng)過BC兩點,求直線BC和拋物線的解析式;

2)在拋物線的對稱軸上找一點M,使MA+MC的值最小,求點M的坐標;

3)設P為拋物線的對稱軸上的一個動點,求使ΔBPC為直角三角形的點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知拋物線x軸交于A-1,0),B30)兩點,與y軸交于點C

(1)求該拋物線的解析式;

(2)如圖①,若點D是拋物線上一動點,設點D的橫坐標為m0m3),連接CD,BD,BCAC,當△BCD的面積等于△AOC面積的2倍時,求m的值;

(3)若點N為拋物線對稱軸上一點,請在圖②中探究拋物線上是否存在點M,使得以B,C,M,N為頂點的四邊形是平行四邊形?若存在,請直接寫出所有滿足條件的點M的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知點A(8,1),B(03),反比例函數(shù)(x>0)的圖象經(jīng)過點A,動直線x=t(0<t<8)與反比例函數(shù)的圖象交于點M,與直線AB交于點N.

(1)k的值;

(2)BMN面積的最大值;

(3)MAAB,求t的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】無錫市靈山勝境公司廠生產一種新的大佛紀念品,每件紀念品制造成本為18元,試銷過程發(fā)現(xiàn),每月銷量萬件與銷售單價之間的關系可以近似地看作一次函數(shù)

寫出公司每月的利潤萬元與銷售單價之間函數(shù)解析式;

當銷售單價為多少元時,公司每月能夠獲得最大利潤?最大利潤是多少?

根據(jù)工商部門規(guī)定,這種紀念品的銷售單價不得高于32如果公司要獲得每月不低于350萬元的利潤,那么制造這種紀念品每月的最低制造成本需要多少萬元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,點,點.將繞點順時針旋轉,得,點旋轉后的對應點為,.記旋轉角為

1)如圖①,當時,求點的坐標;

2)如圖②,當時,求點的坐標;

3)連接,設線段的中點為,連接,求線段的長的最小值(直接寫出結果即可).

查看答案和解析>>

同步練習冊答案