【題目】一次函數(shù)y=kx+b的圖象是直線l,點(diǎn)A(,)在反比例函數(shù)y=的圖象上.
(1)求m的值;
(2)如圖,若直線l與反比例函數(shù)的圖象相交于M、N兩點(diǎn),不等式kx+b>的解集為1<x<2,求一次函數(shù)的表達(dá)式;
(3)當(dāng)b=4時(shí),一次函數(shù)與反比例函數(shù)的圖象有兩個(gè)交點(diǎn),求k的取值范圍.
【答案】(1)m=2;(2)y=﹣x+3;(3)k>﹣2且k≠0.
【解析】
(1)把點(diǎn)A(,)代入y=,即可求得m的值;
(2)根據(jù)題意得出M、N的橫坐標(biāo),代入反比例函數(shù)的解析式為y=,求得坐標(biāo),然后根據(jù)待定系數(shù)法即可求得;
(3)聯(lián)立方程,得到關(guān)于x的方程,由題意可得42-4k×(-2)>0,解不等式即可.
(1)∵點(diǎn)A(,)在反比例函數(shù)y=的圖象上,
∴,
解得m=2;
(2)由題意可知M點(diǎn)的橫坐標(biāo)為1,N點(diǎn)的橫坐標(biāo)為2,
∵m=2,
∴反比例函數(shù)的解析式為y=,
∵直線l與反比例函數(shù)的圖象相交于M、N兩點(diǎn),
∴M(1,2),N(2,1),
把M、N的坐標(biāo)代入y=kx+b得,
解得,
∴一次函數(shù)的表達(dá)式為y=﹣x+3;
(3)∵一次函數(shù)y=kx+4與反比例函數(shù)y=的圖象有兩個(gè)交點(diǎn),
∴kx+4=,
整理得,kx2+4x﹣2=0,則42﹣4k×(﹣2)>0,
解得,k>﹣2,
故當(dāng)b=4時(shí),一次函數(shù)與反比例函數(shù)的圖象有兩個(gè)交點(diǎn),k的取值范圍是k>﹣2且k≠0.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在研究相似問(wèn)題時(shí),甲、乙同學(xué)的觀點(diǎn)如下:
甲:將邊長(zhǎng)為3、4、5的三角形按圖1的方式向外擴(kuò)張,得到新三角形,它們的對(duì)應(yīng)邊間距為1,則新三角形與原三角形相似.
乙:將鄰邊為3和5的矩形按圖2的方式向外擴(kuò)張,得到新的矩形,它們的對(duì)應(yīng)邊間距均為1,則新矩形與原矩形不相似.
對(duì)于兩人的觀點(diǎn),下列說(shuō)法正確的是( )
A. 兩人都對(duì) B. 兩人都不對(duì) C. 甲對(duì),乙不對(duì) D. 甲不對(duì),乙對(duì)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下面的解題過(guò)程,解答后面的問(wèn)題:
如圖,在平面直角坐標(biāo)系中, , ,為線段的中點(diǎn),求點(diǎn)的坐標(biāo);
解:分別過(guò),做軸的平行線,過(guò),做軸的平行線,兩組平行線的交點(diǎn)如圖所示,設(shè),則,,
由圖可知:
線段的中點(diǎn)的坐標(biāo)為
(應(yīng)用新知)
利用你閱讀獲得的新知解答下面的問(wèn)題:
(1)已知,,則線段的中點(diǎn)坐標(biāo)為
(2)平行四邊形中,點(diǎn),,的坐標(biāo)分別為,,,利用中點(diǎn)坐標(biāo)公式求點(diǎn)的坐標(biāo)。
(3)如圖,點(diǎn)在函數(shù)的圖象上, ,在軸上,在函數(shù)的圖象上 ,以,,,四個(gè)點(diǎn)為頂點(diǎn),且以為一邊構(gòu)成平行四邊形,直接寫(xiě)出所有滿足條件的點(diǎn)坐標(biāo)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們知道,把直線y=x向左平移1個(gè)單位可得到一次函數(shù)y=x+1的圖象,把直線y=kx(k≠0)向左平移1個(gè)單位可得到一次函數(shù)y=k(x+1)的圖象,把拋物線y=ax2(a≠0)向左平移1個(gè)單位,可得到二次函數(shù)y=a(x+1)2的圖象.類(lèi)似的:我們將函數(shù)y=∣x∣向左平移1個(gè)單位,在平面直角坐標(biāo)系中畫(huà)出了新函數(shù)的部分圖象,并請(qǐng)回答下列問(wèn)題:
(1)平移后的函數(shù)解析式是__________;
(2)借助下列表格,用你認(rèn)為最簡(jiǎn)單的方法補(bǔ)畫(huà)平移后的函數(shù)圖象:
(3)當(dāng)x 時(shí),y隨x的增大而增大;當(dāng)x 時(shí),y隨x的增大而減小.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB、CD為兩個(gè)建筑物,建筑物AB的高度為60米,從建筑物AB的頂點(diǎn)A點(diǎn)測(cè)得建筑物CD的頂點(diǎn)C點(diǎn)的俯角∠EAC為30°,測(cè)得建筑物CD的底部D點(diǎn)的俯角∠EAD為45°.
(1)求兩建筑物底部之間水平距離BD的長(zhǎng)度;
(2)求建筑物CD的高度(結(jié)果保留根號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系 xOy 中,已知正比例函數(shù) y1=﹣2x 的圖象與反比例函數(shù) y2=的圖象交于 A(﹣1,a),B 兩點(diǎn).
(1)求出反比例函數(shù)的解析式及點(diǎn) B 的坐標(biāo);
(2)觀察圖象,請(qǐng)直接寫(xiě)出滿足 y≤2 的取值范圍;
(3)點(diǎn) P 是第四象限內(nèi)反比例函數(shù)的圖象上一點(diǎn),若△POB 的面積為 1,請(qǐng)直接寫(xiě)出點(diǎn) P的橫坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】有四部不同的電影,分別記為A、B、C、D.
(1)若甲從中隨機(jī)選擇一部觀看,則恰好是電影A的概率是 ;
(2)若甲從中隨機(jī)選擇一部觀看,乙也從中隨機(jī)選擇一部觀看,用列表或畫(huà)樹(shù)狀圖的方法列出所有等可能的結(jié)果,并求甲、乙兩人恰好選擇同一部電影的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)A、B分別在反比例函數(shù)(x>0),(x>0)的圖象上,且∠AOB=90°,則∠B=30°,則k的取值為( )
A. B. C. ﹣2 D. ﹣3
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,Rt△ABC中,∠ACB=90°,CD平分∠ACB交AB于點(diǎn)D,按下列步驟作圖:
步驟1:分別以點(diǎn)C和點(diǎn)D為圓心,大于的長(zhǎng)為半徑作弧,兩弧相交于M,N兩點(diǎn);
步驟2:作直線MN,分別交AC,BC于點(diǎn)E,F(xiàn);
步驟3:連接DE,DF.
若AC=4,BC=2,則線段DE的長(zhǎng)為
A. B. C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com