6、在直角坐標(biāo)平面內(nèi),如果拋物線y=2x2-3經(jīng)過(guò)平移后與拋物線y=2x2重合,那么平移的要求是( 。
分析:根據(jù)拋物線頂點(diǎn)的平移可得拋物線是如何平移的.
解答:解:∵拋物線y=2x2-3的頂點(diǎn)為(0,-3),
拋物線y=2x2的頂點(diǎn)為(0,0),
從(0,-3)到(0,0)是沿y軸向上平移3個(gè)單位,
∴拋物線也是如此平移的.
故選A.
點(diǎn)評(píng):本題考查拋物線的平移,用到的知識(shí)點(diǎn)為:拋物線的平移要看頂點(diǎn)的平移;只縱坐標(biāo)改變是上下平移.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在直角坐標(biāo)平面內(nèi),O為原點(diǎn),點(diǎn)A的坐標(biāo)為(1,0),點(diǎn)C的坐標(biāo)為(0,4),精英家教網(wǎng)直線CM∥x軸(如圖所示).點(diǎn)B與點(diǎn)A關(guān)于原點(diǎn)對(duì)稱(chēng),直線y=x+b(b為常數(shù))經(jīng)過(guò)點(diǎn)B,且與直線CM相交于點(diǎn)D,連接OD.
(1)求b的值和點(diǎn)D的坐標(biāo);
(2)設(shè)點(diǎn)P在x軸的正半軸上,若△POD是等腰三角形,求點(diǎn)P的坐標(biāo);
(3)在(2)的條件下,如果以PD為半徑的圓P與圓O外切,求圓O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,拋物線y=ax2+bx+c(a≠0)與y軸正半軸交于點(diǎn)C,與x軸交于點(diǎn)A(2精英家教網(wǎng),0)、B(8,0),∠OCA=∠OBC.
(1)求拋物線的解析式;
(2)在直角坐標(biāo)平面內(nèi)確定點(diǎn)M,使得以點(diǎn)M、A、B、C為頂點(diǎn)的四邊形是平行四邊形,請(qǐng)直接寫(xiě)出點(diǎn)M的坐標(biāo);
(3)若存在一點(diǎn)P到點(diǎn)A、B、C三點(diǎn)的距離相等,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在直角坐標(biāo)平面內(nèi),O為原點(diǎn),拋物線y=ax2+bx經(jīng)過(guò)點(diǎn)A(6,0),且頂點(diǎn)B(m,6)在直線y=2x上.
(1)求m的值和拋物線y=ax2+bx的解析式;
(2)如在線段OB上有一點(diǎn)C,滿(mǎn)足OC=2CB,在x軸上有一點(diǎn)D(10,0),連接DC,且直線DC與y軸交于點(diǎn)E.
①求直線DC的解析式;
②如點(diǎn)M是直線DC上的一個(gè)動(dòng)點(diǎn),在x軸上方的平面內(nèi)有另一點(diǎn)N,且以O(shè)、E、M、N為頂點(diǎn)的四邊形是菱形,請(qǐng)求出點(diǎn)N的坐標(biāo).(直接寫(xiě)出結(jié)果,不需要過(guò)程.)
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•鎮(zhèn)賚縣模擬)如圖,在直角坐標(biāo)平面內(nèi),函數(shù)y=
mx
(x>0,m是常數(shù))的圖象經(jīng)過(guò)A(1,4),B(a,b),其中a>1.過(guò)點(diǎn)A作x軸垂線,垂足為C,過(guò)點(diǎn)B作y軸垂線,垂足為D,BD與AC交于點(diǎn)H,連接AD.
(1)若△ABD的面積為4,求m值及點(diǎn)B的坐標(biāo).
(2)在(1)的條件下,求直線AB的函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在直角坐標(biāo)平面內(nèi)的△ABC中,點(diǎn)A的坐標(biāo)為(0,2),點(diǎn)C的坐標(biāo)為(5,5),要使以A、B、C、D為頂點(diǎn)的四邊形是平行四邊形,且點(diǎn)D坐標(biāo)在第一象限,那么點(diǎn)D的坐標(biāo)是
(2,5)或(8,5)
(2,5)或(8,5)

查看答案和解析>>

同步練習(xí)冊(cè)答案