【題目】如圖1,在四邊形ABCD中,AB=AD,∠B+∠ADC=180°,點(diǎn)E,F分別在四邊形ABCD的邊BC,CD上,∠EAF=∠BAD,連接EF,試猜想EF,BE,DF之間的數(shù)量關(guān)系.
(1)思路梳理
將△ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)至△ADG,使AB與AD重合,由∠B+∠ADC=180°,得∠FDG=180°,即點(diǎn)F,D,G三點(diǎn)共線,易證△AFG≌△AFE,故EF,BE,DF之間的數(shù)量關(guān)系為__;
(2)類比引申
如圖2,在圖1的條件下,若點(diǎn)E,F由原來的位置分別變到四邊形ABCD的邊CB,DC延長線上,∠EAF=∠BAD,連接EF,試猜想EF,BE,DF之間的數(shù)量關(guān)系,并給出證明.
(3)聯(lián)想拓展
如圖3,在△ABC中,∠BAC=90°,AB=AC,點(diǎn)D,E均在邊BC上,且∠DAE=45°,若BD=1,EC=2,直接寫出DE的長為________________.
【答案】(1)EF=BE+DF;(2)EF=DFBE;證明見解析;(3).
【解析】
(1)將△ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)至△ADG,使AB與AD重合,首先證明F,D,G三點(diǎn)共線,求出∠EAF=∠GAF,然后證明△AFG≌△AFE,根據(jù)全等三角形的性質(zhì)解答;
(2)將△ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn),使AB與AD重合,得到△ADE',首先證明E',D,F三點(diǎn)共線,求出∠EAF=∠E'AF,然后證明△AFE≌△AFE',根據(jù)全等三角形的性質(zhì)解答;
(3)將△ABD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)至△ACD',使AB與AC重合,連接ED',同(1)可證△AED≌AED',求出∠ECD'=90°,再根據(jù)勾股定理計(jì)算即可.
解:(1)將△ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)至△ADG,使AB與AD重合,
∵∠B+∠ADC=180°,
∴∠FDG=180°,即點(diǎn)F,D,G三點(diǎn)共線,
∵∠BAE=∠DAG,∠EAF=∠BAD,
∴∠EAF=∠GAF,
在△AFG和△AFE中,,
∴△AFG≌△AFE,
∴EF=FG=DG+DF=BE+DF;
(2)EF=DFBE;
證明:將△ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn),使AB與AD重合,得到△ADE',則△ABE≌ADE',
∴∠DAE'=∠BAE,AE'=AE,DE'=BE,∠ADE'=∠ABE,
∵∠ABC+∠ADC=180°,∠ABC+∠ABE=180°,
∴∠ADE'=∠ADC,即E',D,F三點(diǎn)共線,
∵∠EAF=∠BAD,
∴∠E'AF=∠BAD(∠BAF+∠DAE')=∠BAD(∠BAF+∠BAE)=∠BAD∠EAF=∠BAD,
∴∠EAF=∠E'AF,
在△AEF和△AE'F中,,
∴△AFE≌△AFE'(SAS),
∴FE=FE',
又∵FE'=DFDE',
∴EF=DFBE;
(3)將△ABD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)至△ACD',使AB與AC重合,連接ED',
同(1)可證△AED≌AED',
∴DE=D'E.
∵∠ACB=∠B=∠ACD'=45°,
∴∠ECD'=90°,
在Rt△ECD'中,ED'=,即DE=,
故答案為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,某同學(xué)把一塊三角形的玻璃打碎成了三塊,現(xiàn)在要到玻璃店去配一塊完全一樣的玻璃,那么最省事的辦法是( )
A.帶①去B.帶②去C.帶③去D.帶①和②去
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某一工程,在工程招標(biāo)時(shí),接到甲,乙兩個(gè)工程隊(duì)的投標(biāo)書.施工一天,需付甲工程隊(duì)工程款1.2萬元,乙工程隊(duì)工程款0.5萬元.工程領(lǐng)導(dǎo)小組根據(jù)甲,乙兩隊(duì)的投標(biāo)書測算,有如下方案:
①甲隊(duì)單獨(dú)完成這項(xiàng)工程剛好如期完成;
②乙隊(duì)單獨(dú)完成這項(xiàng)工程要比規(guī)定日期多用6天;
③若甲,乙兩隊(duì)合做3天,余下的工程由乙隊(duì)單獨(dú)做也正好如期完成.
試問:規(guī)定日期是多少天?在不耽誤工期的前提下,你覺得哪一種施工方案最節(jié)省工程款?請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小李對(duì)某班全體同學(xué)的業(yè)余興趣愛好進(jìn)行了一次調(diào)查,根據(jù)采集到的數(shù)據(jù)繪制了下面的統(tǒng)計(jì)圖表.請(qǐng)據(jù)圖中提供的信息,解答下列問題:
(1)該班共有學(xué)生_____________人;
(2)在圖1中,請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)在圖2中,在扇形統(tǒng)計(jì)圖中,“音樂”部分所對(duì)應(yīng)的圓心角的度數(shù)___________度:
(4)求愛好“書畫”的人數(shù)占該班學(xué)生數(shù)的百分?jǐn)?shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形OABC的頂點(diǎn)A,C分別在x軸,y軸上,頂點(diǎn)B在第一象限,AB=1.將線段OA繞點(diǎn)O按逆時(shí)針方向旋轉(zhuǎn)60°得到線段OP,連接AP,反比例函數(shù)(k≠0)的圖象經(jīng)過P,B兩點(diǎn),則k的值為______________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,面積為4的正方形OABC的頂點(diǎn)O與坐標(biāo)原點(diǎn)重合,邊OA、OC分別在x軸、y軸的正半軸上,點(diǎn)B、P都在函數(shù)y=(x>0)的圖象上,過動(dòng)點(diǎn)P分別作軸x、y軸的平行線,交y軸、x軸于點(diǎn)D、E.設(shè)矩形PDOE與正方形OABC重疊部分圖形的面積為S,點(diǎn)P的橫坐標(biāo)為m.
(1)求k的值;
(2)用含m的代數(shù)式表示CD的長;
(3)求S與m之間的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,正方形ABCD是由兩個(gè)長為a、寬為b的長方形和兩個(gè)邊長分別為a、b的正方形拼成的.
(1)利用正方形ABCD面積的不同表示方法,直接寫出、、ab之間的關(guān)系式,這個(gè)關(guān)系式是 ;
(2)若m滿足,請(qǐng)利用(1)中的數(shù)量關(guān)系,求的值;
(3)若將正方形EFGH的邊、分別與圖①中的PG、MG重疊,如圖②所示,已知PF=8,NH=32,求圖中陰影部分的面積(結(jié)果必須是一個(gè)具體數(shù)值).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABE與△CDE都是等腰直角三角形,∠AEB=∠DEC=90°,連接AD,AC,BC,BD,若AD=AC=AB,則下列結(jié)論:①AE垂直平分CD,②AC平分∠BAD,③△ABD是等邊三角形,④∠BCD的度數(shù)為150°,其中正確的個(gè)數(shù)是( )
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,點(diǎn)E為正方形ABCD的邊AB上一點(diǎn),EF⊥EC,且EF=EC,連接AF.
(1)求∠EAF的度數(shù);
(2)如圖2,連接FC交BD于M,交AD于N.求證:BD=AF+2DM.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com