如圖①所示,已知、為直線上兩點,點為直線上方一動點,連接,分別以、為邊向外作正方形和正方形,過點于點,過點于點.
小題1:如圖②,當點恰好在直線上時(此時重合),試說明;
小題2:在圖①中,當兩點都在直線的上方時,試探求三條線段、之間的數(shù)量關(guān)系,并說明理由;
小題3:如圖③,當點在直線的下方時,請直接寫出三條線段、之間的數(shù)量關(guān)系.(不需要證明)

小題1:在正方形中,∵, ,

又∵, ∴,∴,
 
又∵四邊形為正方形,∴,∴
中,,
,∴
小題1:
過點,垂足為

由(1)知:,
,,∴ 、
小題1: 

小題1:由四邊形CADF、CBEG是正方形,可得AD=CA,∠DAC=∠ABC=90°,又由同角的余角相等,求得∠ADD1=∠CAB,然后利用AAS證得△ADD1≌△CAB,根據(jù)全等三角形的對應(yīng)邊相等,即可得DD1=AB;
小題1:首先過點C作CH⊥AB于H,由DD1⊥AB,可得∠DD1A=∠CHA=90°,由四邊形CADF是正方形,可得AD=CA,又由同角的余角相等,求得∠ADD1=∠CAH,然后利用AAS證得
△ADD1≌△CAH,根據(jù)全等三角形的對應(yīng)邊相等,即可得DD1=AH,同理EE1=BH,則可得AB=DD1+EE1
小題1:證明方法同(2),易得AB=DD1-EE1
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖所示,有一條等寬(AF=EC)的小路穿過矩形的草地ABCD,已知AB="60m," BC="84m," AE=100m.

(1)試判斷這條小路(四邊形AECF)的形狀,并說明理由;
(2)求這條小路的的面積和對角線FE的長度.(精確到整數(shù))

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,矩形ABCD中,O是AC與BD的交點,過O點的直線EF與AB, CD的延長線分別交于E,F.

小題1:求證:△BOE≌△DOF;
小題2:在現(xiàn)有條件下,再添加EF與AC滿足什么關(guān)系時,以A,E,C,F為頂點的四邊形是菱形?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

現(xiàn)有10個邊長為1的正方形,排列形式如左下圖, 請把它們分割后拼接成一個新的正方形.要求: 在左下圖中用實線畫出分割線,并在右下圖的正方形網(wǎng)格圖(圖中每個小正方形的邊長均為1)中用實線畫出拼接成的新正方形.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,將兩張長為8,寬為2的矩形紙條交叉,使重疊部分ABCD是一個菱形。菱形周長的最小值是_______,菱形周長最大值是_______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,正方形ABCD的面積為3,點E是DC邊上一點,DE=1,將線段AE繞點A旋轉(zhuǎn),使點E落在直線BC上,落點記為F,則FC的長為       .    

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

在菱形ABCD中,對角線AC=8,BD=6,則D到AB的距離為____________.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,將長8cm,寬4cm的矩形紙片ABCD折疊,使點A與C重合,則折痕EF的長為_____cm.]

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,有一矩形紙片ABCD,AB=10,AD=6,將紙片折疊,使AD邊落在AB邊上,折痕為AE,再將以DE為折痕向右折疊,AE與BC交于點F,則的面積為(   )
A.4B.6C.8D.10

查看答案和解析>>

同步練習冊答案