【題目】如圖,我們把一個(gè)半圓與拋物線的一部分圍成的封閉圖形稱為“果圓”.已知點(diǎn)A、B、C、D分別是“果圓”與坐標(biāo)軸的交點(diǎn),拋物線的解析式為y=(x﹣1)2﹣4,AB為半圓的直徑,則這個(gè)“果圓”被y軸截得的弦CD的長(zhǎng)為_____.
【答案】3+
【解析】
利用二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征可求出點(diǎn)A、B、D的坐標(biāo),進(jìn)而可得出OD、OA、OB,根據(jù)圓的性質(zhì)可得出OM的長(zhǎng)度,在Rt△COM中,利用勾股定理可求出CO的長(zhǎng)度,再根據(jù)CD=CO+OD即可求出結(jié)論.
當(dāng)x=0時(shí),y=(x﹣1)2﹣4=﹣3,
∴點(diǎn)D的坐標(biāo)為(0,﹣3),
∴OD=3;
當(dāng)y=0時(shí),有(x﹣1)2﹣4=0,
解得:x1=﹣1,x2=3,
∴點(diǎn)A的坐標(biāo)為(﹣1,0),點(diǎn)B的坐標(biāo)為(0,3),
∴AB=4,OA=1,OB=3.
連接CM,則CM=AB=2,OM=1,如圖所示.
在Rt△COM中,CO==,
∴CD=CO+OD=3+.
故答案為:3+.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,拋物線y=x2﹣(3m+1)x+2m2+m(m>0),與y軸交于點(diǎn)C,與x軸交于點(diǎn)A(x1,0),B(x2,0),且x1<x2.
(1)求2x1﹣x2+3的值;
(2)當(dāng)m=2x1﹣x2+3時(shí),將此拋物線沿對(duì)稱軸向上平移n個(gè)單位,使平移后得到的拋物線頂點(diǎn)落在△ABC的內(nèi)部(不包括△ABC的邊),求n的取值范圍(直接寫出答案即可).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖1,△ABC中,作∠ABC、∠ACB的平分線相交于點(diǎn)O,過點(diǎn)O作EF∥BC分別交AB、AC于E、F.
①求證:OE=BE.
②若△ABC的周長(zhǎng)是25,BC=9,試求出△AEF的周長(zhǎng).
(2)如圖2,若∠ABC的平分線與∠ACB外角∠ACD的平分線相交于點(diǎn)P,連接AP,若∠BAC=80°,∠PAC的度數(shù)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,F是CD上一點(diǎn),E是BF上一點(diǎn),連接AE、AC、DE.若AB=AC,AD=AE,∠BAC=∠DAE=70°,AE平分∠BAC,則下列結(jié)論中:①△ABE≌△ACD:②BE=EF;③∠BFD=110°;④AC垂直平分DE,正確的個(gè)數(shù)有( 。
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,點(diǎn)P在AC上運(yùn)動(dòng),點(diǎn)D在AB上,PD始終保持與PA相等,BD的垂直平分線交BC于點(diǎn)E,交BD于點(diǎn)F,連接DE.
(1)判斷DE與DP的位置關(guān)系,并說明理由;
(2)若AC=6,BC=8,PA=2,求線段DE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在ABCD中,E、F分別是AD、BC上的點(diǎn),將平行四邊形ABCD沿EF所在直線翻折,使點(diǎn)B與點(diǎn)D重合,且點(diǎn)A落在點(diǎn)A′處.
(1)求證:△A′ED≌△CFD;
(2)連結(jié)BE,若∠EBF=60°,EF=3,求四邊形BFDE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O直徑,點(diǎn)C在⊙O上,
AD平分∠CAB,BD是⊙O的切線,AD與BC相交于點(diǎn)E.
(1)求證:BD=BE;
(2)若DE=2,BD=,求CE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,點(diǎn)A、B、C在x軸上,點(diǎn)D、E在y軸上,OA=OD=2,OC=OE=4,B為線段OA的中點(diǎn),直線AD與經(jīng)過B、E、C三點(diǎn)的拋物線交于F、G兩點(diǎn),與其對(duì)稱軸交于M,點(diǎn)P為線段FG上一個(gè)動(dòng)點(diǎn)(與F、G不重合),PQ∥y軸與拋物線交于點(diǎn)Q.
(1)求經(jīng)過B、E、C三點(diǎn)的拋物線的解析式;
(2)判斷△BDC的形狀,并給出證明;當(dāng)P在什么位置時(shí),以P、O、C為頂點(diǎn)的三角形是等腰三角形,并求出此時(shí)點(diǎn)P的坐標(biāo);
(3)若拋物線的頂點(diǎn)為N,連接QN,探究四邊形PMNQ的形狀:①能否成為菱形;②能否成為等腰梯形?若能,請(qǐng)直接寫出點(diǎn)P的坐標(biāo);若不能,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)課外興趣小組活動(dòng)時(shí),老師提出了如下問題:
如圖①,△ABC中,若AB=13,AC=9,求BC邊上的中線AD的取值范圍.
小明在組內(nèi)經(jīng)過合作交流,得到了如下的解決方法:延長(zhǎng)AD至點(diǎn)E,使DE=AD,連接BE.請(qǐng)根據(jù)小明的方法思考:
Ⅰ.由已知和作圖能得到△ADC≌△EDB,依據(jù)是 .
A.SSS B.SAS C.AAS D.HL
Ⅱ.由“三角形的三邊關(guān)系”可求得AD的取值范圍是 .
解后反思:題目中出現(xiàn)“中點(diǎn)”、“中線”等條件,可考慮延長(zhǎng)中線構(gòu)造全等三角形,把分散的已知條件和所求證的結(jié)論集中到同一個(gè)三角形之中.
(2)如圖②,AD是△ABC的中線,BE交AC于E,交AD于F,且∠FAE=∠AFE.若AE=4,EC=3,求線段BF的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com