【題目】如圖,在ABC中,∠C90°,點(diǎn)PAC上運(yùn)動(dòng),點(diǎn)DAB上,PD始終保持與PA相等,BD的垂直平分線交BC于點(diǎn)E,交BD于點(diǎn)F,連接DE

1)判斷DEDP的位置關(guān)系,并說明理由;

2)若AC6,BC8,PA2,求線段DE的長.

【答案】1DEDP,理由見解析;(2DE4.75

【解析】

1)根據(jù)等腰三角形的性質(zhì)得到∠A=∠PDA,根據(jù)線段垂直平分線的性質(zhì)得到EBED,于是得到結(jié)論;

2)連接PE,設(shè)DEx,則EBEDx,CE8x,根據(jù)勾股定理即可得到結(jié)論.

解:(1DEDP,

理由如下:∵PDPA,

∴∠A=∠PDA,

EFBD的垂直平分線,

EBED,

∴∠B=∠EDB,

∵∠C90°,

∴∠A+B90°,

∴∠PDA+EDB90°,

∴∠PDE180°90°90°,

DEDP;

2)連接PE,設(shè)DEx,則EBEDx,CE8x,

∵∠C=∠PDE90°,

PC2+CE2PE2PD2+DE2,

42+8x222+x2,

解得:x4.75,

DE4.75

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在梯形ABCD中,AD∥BC,AB∥DE,AF∥DC,E、F兩點(diǎn)在BC上,且四邊形AEFD是平行四邊形.

(1)ADBC有何等量關(guān)系?請說明理由;

(2)當(dāng)AB=DC時(shí),求證:四邊形AEFD是矩形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=4,AC=3,BC=5,DE是BC的垂直平分線,DE分別交BC、AB于點(diǎn)D、E.

(1)求證:△ABC為直角三角形.

(2)求AE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一次函數(shù)y=ax+b與二次函數(shù)y=ax2+bx+c在同一坐標(biāo)系中的圖象可能是( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長為1的小正方形組成的網(wǎng)格中,四邊形ABCD的四個(gè)頂點(diǎn)均在格點(diǎn)上,請按要求完成下列各題:

1)線段AC的長為________,CD的長為________,AD的長為________.

2)試判斷的形狀并求出四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,我們把一個(gè)半圓與拋物線的一部分圍成的封閉圖形稱為果圓.已知點(diǎn)A、B、C、D分別是果圓與坐標(biāo)軸的交點(diǎn),拋物線的解析式為y=(x﹣1)2﹣4,AB為半圓的直徑,則這個(gè)果圓y軸截得的弦CD的長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ADBC,GCBC,CFAB,垂足分別是D、C、F,下列說法中,錯(cuò)誤的是(  )

A. ABC中,AD是邊BC上的高

B. ABC中,GC是邊BC上的高

C. GBC中,GC是邊BC上的高

D. GBC中,CF是邊BG上的高

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在學(xué)校開展的數(shù)學(xué)活動(dòng)課上,小明和小剛制作了一個(gè)正三樓錐(質(zhì)量均勻,四個(gè)面完全相同),并在各個(gè)面上分別標(biāo)記數(shù)字1,2,3,4,游戲規(guī)則如下每人投擲三棱錐兩次,并記錄底面的數(shù)字,如果兩次所擲數(shù)字的和為單數(shù),那么算小明贏,如果兩歡所擲數(shù)字的和為偶數(shù),那么算小明贏;

(1)請用列表或者面樹狀圍的方法表示上述游戲中的所有可能結(jié)果.

(2)請分別隸出小明和小剛能贏的概率,并判新游戲的公平性.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,花果山上有兩只猴子在一棵樹CD上的點(diǎn)B處,且BC=5m,它們都要到A處吃東西,其中一只猴子甲沿樹爬下走到離樹10m處的池塘A處,另一只猴子乙先爬到樹頂D處后再沿纜繩DA線段滑到A處.已知兩只猴子所經(jīng)過的路程相等,設(shè)BDxm

1)請用含有x整式表示線段AD的長為______m

2)求這棵樹高有多少米?

查看答案和解析>>

同步練習(xí)冊答案