【題目】在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),A、B、C三點(diǎn)的坐標(biāo)為( ,0)、(3 ,0)、(0,5),點(diǎn)D在第一象限,且∠ADB=60°,則線段CD的長的最小值為

【答案】2 ﹣2.
【解析】解:作圓,使∠ADB=60°,設(shè)圓心為P,連結(jié)PA、PB、PC,PE⊥AB于E,如圖所示: ∵A( ,0)、B(3 ,0),
∴E(2 ,0)
又∠ADB=60°,
∴∠APB=120°,
∴PE=1,PA=2PE=2,
∴P(2 ,1),
∵C(0,5),
∴PC= =2 ,
又∵PD=PA=2,
∴只有點(diǎn)D在線段PC上時,CD最短(點(diǎn)D在別的位置時構(gòu)成△CDP)
∴CD最小值為:2 ﹣2.
故答案為:2 ﹣2.

作圓,求出半徑和PC的長度,判出點(diǎn)D只有在CP上時CD最短,CD=CP﹣DP求解.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AC∥BD,AB和CD相交于點(diǎn)E,AC=6,BD=4,F(xiàn)是BC上一點(diǎn),SBEF:SEFC=2:3.
(1)求EF的長;
(2)如果△BEF的面積為4,求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1是一種折疊椅,忽略其支架等的寬度,得到他的側(cè)面簡化結(jié)構(gòu)圖(圖2),支架與坐板均用線段表示,若座板DF平行于地面MN,前支撐架AB與后支撐架AC分別與座板DF交于點(diǎn)E、D,現(xiàn)測得DE=20厘米,DC=40厘米,∠AED=58°,∠ADE=76°.
(1)求椅子的高度(即椅子的座板DF與地面MN之間的距離)(精確到1厘米)
(2)求椅子兩腳B、C之間的距離(精確到1厘米)(參考數(shù)據(jù):sin58°≈0.85,cos58°≈0.53,tan58°≈1.60,sin76°≈0.97.cos76°≈0.24,tan76°≈4.00)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解答題。
(1)計算: ;
(2)因式分解:(a+2)(a﹣2)+4(a+1)+4.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綜合探究:如圖1,在平面直角坐標(biāo)系xOy中,拋物線y=﹣ 與x軸交于點(diǎn)A(﹣6,0)和點(diǎn)B(點(diǎn)A在點(diǎn)B左側(cè)),與y軸交于點(diǎn)C,點(diǎn)P為線段AO上的一個動點(diǎn),過點(diǎn)P作x軸的垂線l與拋物線交于點(diǎn)E,連接AE,EC.

(1)求拋物線的表達(dá)式及點(diǎn)C的坐標(biāo);
(2)連接AC交直線l于點(diǎn)D,則在點(diǎn)P運(yùn)動過程中,當(dāng)點(diǎn)D為EP中點(diǎn)時,SADP:SCDE=
(3)如圖2,當(dāng)EC∥x軸時,點(diǎn)P停止運(yùn)動,此時,在拋物線上是否存在點(diǎn)G,使得以點(diǎn)A,E,G為頂點(diǎn)的三角形是直角三角形?若存在,請求出點(diǎn)G的坐標(biāo),若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市今年的信息技術(shù)結(jié)業(yè)考試,采用學(xué)生抽簽的方式?jīng)Q定自己的考試內(nèi)容.規(guī)定:每位考生先在三個筆試題(題簽分別用代碼B1、B2、B3表示)中抽取一個,再在三個上機(jī)題(題簽分別用代碼J1、J2、J3表示)中抽取一個進(jìn)行考試.小亮在看不到題簽的情況下,分別從筆試題和上機(jī)題中隨機(jī)地抽取一個題簽.
(1)用樹狀圖或列表法表示出所有可能的結(jié)果;
(2)求小亮抽到的筆試題和上機(jī)題的題簽代碼的下標(biāo)(例如“B1”的下標(biāo)為“1”)為一個奇數(shù)一個偶數(shù)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知購買1個足球和1個籃球共需130元,購買2個足球和3個籃球共需340元.
(1)求每個足球和每個籃球的售價;
(2)如果某校計劃購買這兩種球共54個,總費(fèi)用不超過4000元,問最多可買多少個籃球?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,從一塊直徑為24cm的圓形紙片上剪出一個圓心角為90°的扇形ABC,使點(diǎn)A,B,C在圓周上,將剪下的扇形作為一個圓錐的側(cè)面,則這個圓錐的底面圓的半徑是( 。

A.12cm
B.6cm
C.3 cm
D.2 cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC的邊AB為⊙O的直徑,BC與⊙O交于點(diǎn)D,D為BC的中點(diǎn),過點(diǎn)D作DE⊥AC于E.
(1)求證:AB=AC;
(2)求證:DE是⊙O的切線;
(3)若AB=13,BC=10,求CE的長.

查看答案和解析>>

同步練習(xí)冊答案