【題目】在△ABC中,CD是△ABC的中線,如果上的所有點都在△ABC的內(nèi)部或邊上,則稱為△ABC的中線弧.
(1)在Rt△ABC中,∠ACB=90°,AC=1,D是AB的中點.
①如圖1,若∠A=45°,畫出△ABC的一條中線弧,直接寫出△ABC的中線弧所在圓的半徑r的最小值;
②如圖2,若∠A=60°,求出△ABC的最長的中線弧的弧長l.
(2)在平面直角坐標(biāo)系中,已知點A(2,2),B(4,0),C(0,0),在△ABC中,D是AB的中點.求△ABC的中線弧所在圓的圓心P的縱坐標(biāo)t的取值范圍.
【答案】(1)①圖見解析,,②;(2)t≥5或t≤﹣
【解析】
(1)①如圖1中,當(dāng)中線弧的圓心是AC或BC的中點時,所在圓的半徑r的最小.
②如圖2中,當(dāng)中線弧所在的圓與AC,AB都相切時,的弧長最大.
(2)分兩種情形:如圖3中,若中線弧在 線段CD的下方時,如圖4中,若中線弧在 線段CD的上方時,分別求解即可解決問題.
解:(1)①如圖1中,當(dāng)直線弧的圓心是AC或BC的中點時,所在圓的半徑r的最小,
當(dāng)∠A=45°,
此時r=AC=,
∴△ABC的中線弧所在圓的半徑r的最小值為.
②如圖2中,當(dāng)中線弧所在的圓與AC,AB都相切時,的弧長最大,
此時,的圓心在BC上,
∵ND⊥BD,
∴∠NDB=90°,
∵∠A=60°,∠ACB=90°,
∴∠B=30°,
∴BN=2DN=2CN,
∴3CN=BC=,
∴CN=,
∴半徑為.
∴△ABC的最長的中線弧的弧長l;
(2)如圖3中,若中線弧在 線段CD的下方時,
∵△ABC的中線弧所在的圓的圓心在線段CD使得垂直平分線上,
當(dāng)中線弧所在圓與BC相切時,可得P(0,5),
觀察圖象可知中線弧所在圓的圓心P的縱坐標(biāo)t≥5.
如圖4中,若中線弧在 線段CD的上方時,
當(dāng)中線弧所在圓與AC相切時,可得P(,﹣),
觀察圖象可知中線弧所在圓的圓心P的縱坐標(biāo)t≤﹣.
綜上所述,中線弧所在圓的圓心P的縱坐標(biāo)t的取值范圍為:t≥5或t≤﹣.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩家商場平時以同樣的價格出售相同的商品.“五一”節(jié)期間兩家商場都讓利酬賓.在甲商場按累計購物金額的收費;在乙商場累計購物金額超過元后,超出元的部分按收費.設(shè)小紅在同一商場累計購物金額為元,其中.
(1)根據(jù)題意,填寫下表(單位:元):
累計購物金額 | ··· | |||
在甲商場實際花費 | ··· | |||
在乙商場實際花費 | ··· |
(2)設(shè)小紅在甲商場實際花費元,在乙商場實際花費元,分別求關(guān)于的函數(shù)解析式;
(3)“五一”節(jié)期間小紅如何選擇這兩家商場去購物更省錢?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校在開展讀書交流活動中,全體師生積極捐書,為了解所捐書籍的種類,對部分書籍進行了抽樣調(diào)查,張老師根據(jù)調(diào)查數(shù)據(jù)繪制了如下不完整的統(tǒng)計圖.
請根據(jù)統(tǒng)計圖回答下列問題:
(1)本次抽樣調(diào)查的書籍有多少本?
(2)試求圖1中表示文學(xué)類書籍的扇形圓心角的度數(shù),并補全條形統(tǒng)計圖.
(3)本次活動師生共捐書本,請估計有多少本科普類書籍?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知銳角∠AOB,如圖,(1)在射線OA上取一點C,以點O為圓心,OC長為半徑作,交射線OB于點D,連接CD;(2)分別以點C,D為圓心,CD長為半徑作弧,兩弧交于點P,連接CP,DP;(3)作射線OP交CD于點Q.根據(jù)以上作圖過程及所作圖形,下列結(jié)論中錯誤的是( 。
A.CP∥OBB.CP=2QCC.∠AOP=∠BOPD.CD⊥OP
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線l與⊙O相離,OA⊥l于點A,與⊙O相交于點P,OA=5.C是直線l上一點,連接CP并延長,交⊙O于點B,且AB=AC.
(1)求證:AB是⊙O的切線;
(2)若tan∠ACB=,求線段BP的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在推進城鄉(xiāng)生活垃圾分類的行動中,為了了解社區(qū)居民對垃圾分類知識的掌握情況,某社區(qū)隨機抽取40名居民進行測試,并對他們的得分數(shù)據(jù)進行收集、整理、描述和分析.下面給出了部分信息:
a.社區(qū)40名居民得分的頻數(shù)分布直方圖:(數(shù)據(jù)分成5組:50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x<100):
b.社區(qū)居民得分在80≤x<90這一組的是:
80 80 81 82 83 84 84 85 85 85 86 86 87 89
c.40個社區(qū)居民的年齡和垃圾分類知識得分情況統(tǒng)計圖:
d.社區(qū)居民甲的垃圾分類知識得分為89分.
根據(jù)以上信息,回答下列問題:
(1)社區(qū)居民甲的得分在抽取的40名居民得分中從高到低排名第 ;
(2)在垃圾分類得分比居民甲得分高的居民中,居民年齡最大約是 歲;
(3)下列推斷合理的是 .
①相比于點A所代表的社區(qū)居民,居民甲的得分略高一些,說明青年人比老年人垃圾分類知識掌握得更好一些;
②垃圾分類知識得分在90分以上的社區(qū)居民年齡主要集中在15歲到35歲之間,說明青年人垃圾分類知識掌握更為全面,他們可以向身邊的老年人多宣傳垃圾分類知識.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于平面直角坐標(biāo)系xOy中的任意點,如果滿足 (x≥0,a為常數(shù)),那么我們稱這樣的點叫做“特征點”.
(1)當(dāng)2≤a≤3時,
①在點中,滿足此條件的特征點為__________________;
②⊙W的圓心為,半徑為1,如果⊙W上始終存在滿足條件的特征點,請畫出示意圖,并直接寫出m的取值范圍;
(2)已知函數(shù),請利用特征點求出該函數(shù)的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知線段,直線垂直平分且交于點.以為圓心,長為半徑作弧,交直線于兩點,分別連接.
(1)根據(jù)題意,補全圖形;
(2)求證:四邊形為正方形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,線段AB=5cm,∠BAM=90°,P是與∠BAM所圍成的圖形的外部的一定點,C是上一動點,連接PC交弦AB于點D.設(shè)A,D兩點間的距離為xcm,P,D兩點間的距離為y1cm,P,C兩點間的距離為y2cm.小騰根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗,分別對函數(shù)y1,y2隨自變量x的變化而變化的規(guī)律進行了探究.
下面是小騰的探究過程,請補充完整:
按照表中自變量x的值進行取點、畫圖、測量,分別得到了y1,y2與x的幾組對應(yīng)值:
x/cm | 0.00 | 1.00 | 1.56 | 1.98 | 2.50 | 3.38 | 4.00 | 4.40 | 5.00 |
y1/cm | 2.75 | 3.24 | 3.61 | 3.92 | 4.32 | 5.06 | 5.60 | 5.95 | 6.50 |
y2/cm | 2.75 | 4.74 | 5.34 | 5.66 | 5.94 | 6.24 | 6.37 | 6.43 | 6.50 |
(1)在同一平面直角坐標(biāo)系xOy中,畫出各組數(shù)值所對應(yīng)的點(x,y1),(x,y2),并畫出函數(shù)y1,y2的圖象;
(2)連接BP,結(jié)合函數(shù)圖象,解決問題:當(dāng)△BDP為等腰三角形時,x的值約為_____cm(結(jié)果保留一位小數(shù)).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com