【題目】已知線段,直線垂直平分且交于點.以為圓心,長為半徑作弧,交直線兩點,分別連接

(1)根據(jù)題意,補全圖形;

(2)求證:四邊形為正方形.

【答案】(1)見解析;(2)證明過程見解析.

【解析】

1)直接根據(jù)題意中垂直平分線的尺規(guī)作圖畫出圖形即可;

2)直接利用基本作圖方法結(jié)合正方形的判定方法得出答案.

解:(1)如下圖所示:

2)證明:∵直線l垂直平分AB,

AC=BC,BD=AD,∠AOC=AOD=90°,且CODO都是以O為圓心的半徑,

在△AOC和△AOD

∴△AOC≌△AODSAS),

AC=BC=BD=AD,

∴四邊形ACBD是菱形,

又∵OA=OB=OC=OD,

∴∠CAD=45°+45°=90°,

∴菱形ACBD為正方形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,扇形OAB中,∠AOB90°,將扇形OAB繞點B逆時針旋轉(zhuǎn),得到扇形BDC,若點O剛好落在弧AB上的點D處,則的值為( 。

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,CDABC的中線,如果上的所有點都在ABC的內(nèi)部或邊上,則稱ABC的中線弧.

1)在Rt△ABC中,ACB90°AC1,DAB的中點.

如圖1,若A45°,畫出ABC的一條中線弧,直接寫出ABC的中線弧所在圓的半徑r的最小值;

如圖2,若A60°,求出ABC的最長的中線弧的弧長l

2)在平面直角坐標系中,已知點A2,2),B4,0),C0,0),在ABC中,DAB的中點.求ABC的中線弧所在圓的圓心P的縱坐標t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下面是小菲設(shè)計的“作一個角等于已知角的二倍”的尺規(guī)作圖過程.

已知:中,

求作:,使得

作法:如圖,

①分別以點和點為圓心,大于的長為半徑作弧,兩弧交于、點,作直線;

②分別以點和點為圓心,大于的長為半徑作弧,兩弧交于、點,作直線,交于點;

③連接

④以點為圓心,的長為半徑作

所以

根據(jù)小菲設(shè)計的尺規(guī)作圖過程.

1)使用直尺和圓規(guī),補全圖形(保留作圖痕跡);

2)完成下面的證明.

證明:連接

分別為的垂直平分線,

________

的外接圓.

∵點上的一點,

.(____________).(填推理的依據(jù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】改革開放以來,人們的支付方式發(fā)生了巨大轉(zhuǎn)變,近年來,移動支付已成為主要的支付方式之一,為了解某校學(xué)生上個月兩種移動支付方式的使用情況,從全校名學(xué)生中隨機抽取了人,發(fā)現(xiàn)樣本中兩種支付方式都不使用的有人,樣本中僅使用種支付方式和僅使用種支付方式的學(xué)生的支付金額()的分布情況如下:

支付金額(元)

支付方式

僅使用

僅使用

下面有四個推斷:

①從樣本中使用移動支付的學(xué)生中隨機抽取一名學(xué)生,該生使用A支付方式的概率大于他使用B支付方式的概率;

②根據(jù)樣本數(shù)據(jù)估計,全校1000名學(xué)生中.同時使用A、B兩種支付方式的大約有400人;

③樣本中僅使用A種支付方式的同學(xué),上個月的支付金額的中位數(shù)一定不超過1000元;

④樣本中僅使用B種支付方式的同學(xué),上個月的支付金額的平均數(shù)一定不低于1000元.其中合理的是(

A.①③B.②④C.①②③D.①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系中,存在拋物線以及兩點

(1)求該拋物線的頂點坐標;(用含的代數(shù)式表示)

(2)若該拋物線經(jīng)過點,求此拋物線的表達式;

(3)若該拋物線與線段有公共點,結(jié)合圖象,求的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點A,BC為平面內(nèi)不在同一直線上的三點.點D為平面內(nèi)一個動點.線段AB,BCCD,DA的中點分別為M,N,P,Q.在點D的運動過程中,有下列結(jié)論:存在無數(shù)個中點四邊形MNPQ是平行四邊形;存在無數(shù)個中點四邊形MNPQ是菱形;存在無數(shù)個中點四邊形MNPQ是矩形;存在兩個中點四邊形MNPQ是正方形.所有正確結(jié)論的序號是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,直線yx+3與函數(shù)yx0)的圖象交于點A1,m),與x軸交于點B

1)求mk的值;

2)過動點P0,n)(n0)作平行于x軸的直線,交函數(shù)yx0)的圖象于點C,交直線yx+3于點D

①當n2時,求線段CD的長;

②若CDOB,結(jié)合函數(shù)的圖象,直接寫出n的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2020年,由于“疫情”的原因,學(xué)校未能準時開學(xué),某中學(xué)為了了解學(xué)生在家“課間”活動情況,在七、八、九年級的學(xué)生中,分別抽取了相同數(shù)量的學(xué)生對“你最喜歡的運動項目”在線進行調(diào)查(每人只能選一項),調(diào)查結(jié)果的部分數(shù)據(jù)如下表(圖)所示,其中七年級最喜歡跳繩的人數(shù)比八年級多5人,九年級最喜歡排球的人數(shù)為10人.

七年級學(xué)生最喜歡的運動項目人數(shù)統(tǒng)計表

項目

排球

籃球

踢毽

跳繩

其他

人數(shù)(人)

7

8

14

6

請根據(jù)以上統(tǒng)計表(圖)解答下列問題:

1)本次調(diào)查共抽取的人數(shù)為 人;

2)請直接補全統(tǒng)計表和統(tǒng)計圖;

3)根據(jù)抽樣調(diào)查的結(jié)果,請你估計該校1500名學(xué)生中有多少名學(xué)生最喜歡踢毽子?

查看答案和解析>>

同步練習(xí)冊答案