【題目】改革開(kāi)放以來(lái),人們的支付方式發(fā)生了巨大轉(zhuǎn)變,近年來(lái),移動(dòng)支付已成為主要的支付方式之一,為了解某校學(xué)生上個(gè)月兩種移動(dòng)支付方式的使用情況,從全校名學(xué)生中隨機(jī)抽取了人,發(fā)現(xiàn)樣本中兩種支付方式都不使用的有人,樣本中僅使用種支付方式和僅使用種支付方式的學(xué)生的支付金額()的分布情況如下:

支付金額(元)

支付方式

僅使用

僅使用

下面有四個(gè)推斷:

①?gòu)臉颖局惺褂靡苿?dòng)支付的學(xué)生中隨機(jī)抽取一名學(xué)生,該生使用A支付方式的概率大于他使用B支付方式的概率;

②根據(jù)樣本數(shù)據(jù)估計(jì),全校1000名學(xué)生中.同時(shí)使用A、B兩種支付方式的大約有400人;

③樣本中僅使用A種支付方式的同學(xué),上個(gè)月的支付金額的中位數(shù)一定不超過(guò)1000元;

④樣本中僅使用B種支付方式的同學(xué),上個(gè)月的支付金額的平均數(shù)一定不低于1000元.其中合理的是(

A.①③B.②④C.①②③D.①②③④

【答案】C

【解析】

由題意根據(jù)概率公式、樣本估計(jì)總體思想的運(yùn)用、中位數(shù)和平均數(shù)的定義逐一判斷可得.

解:①?gòu)臉颖局惺褂靡苿?dòng)支付的學(xué)生中隨機(jī)抽取一名學(xué)生,該生使用A支付方式的概率為

,使用B支付方式的概率為,此推斷合理;

②根據(jù)樣本數(shù)據(jù)估計(jì),全校1000名學(xué)生中,同時(shí)使用A,B兩種支付方式的大約有(人),此推斷合理;

③樣本中僅使用A種支付方式的同學(xué),第1516個(gè)數(shù)據(jù)均落在0a1000,所以上個(gè)月的支付金額的中位數(shù)一定不超過(guò)1000元,此推斷合理;

④樣本中僅使用B種支付方式的同學(xué),上個(gè)月的支付金額的平均數(shù)無(wú)法估計(jì),此推斷不正確.

故推斷正確的有①②③.

故選:C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線y=ax2+bx+a+2(a≠0)x軸交于點(diǎn)A(x10),點(diǎn)B(x2,0)(點(diǎn)A在點(diǎn)B的左側(cè)),拋物線的對(duì)稱(chēng)軸為直線x=-1

(1)若點(diǎn)A的坐標(biāo)為(-30),求拋物線的表達(dá)式及點(diǎn)B的坐標(biāo);

(2)C是第三象限的點(diǎn),且點(diǎn)C的橫坐標(biāo)為-2,若拋物線恰好經(jīng)過(guò)點(diǎn)C,直接寫(xiě)出x2的取值范圍;

(3)拋物線的對(duì)稱(chēng)軸與x軸交于點(diǎn)D,點(diǎn)P在拋物線上,且∠DOP=45°,若拋物線上滿(mǎn)足條件的點(diǎn)P恰有4個(gè),結(jié)合圖象,求a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線l與⊙O相離,OAl于點(diǎn)A,與⊙O相交于點(diǎn)P,OA5C是直線l上一點(diǎn),連接CP并延長(zhǎng),交⊙O于點(diǎn)B,且ABAC

1)求證:AB是⊙O的切線;

2)若tanACB,求線段BP的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于平面直角坐標(biāo)系xOy中的任意點(diǎn),如果滿(mǎn)足 (x≥0,a為常數(shù)),那么我們稱(chēng)這樣的點(diǎn)叫做特征點(diǎn)

1)當(dāng)2≤a≤3時(shí),

①在點(diǎn)中,滿(mǎn)足此條件的特征點(diǎn)為__________________;

②⊙W的圓心為,半徑為1,如果⊙W上始終存在滿(mǎn)足條件的特征點(diǎn),請(qǐng)畫(huà)出示意圖,并直接寫(xiě)出m的取值范圍;

2)已知函數(shù),請(qǐng)利用特征點(diǎn)求出該函數(shù)的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】2020年新冠肺炎疫情發(fā)生以來(lái),我市廣大在職黨員積極參與社區(qū)防疫工作,助力社區(qū)堅(jiān)決打贏疫情防控阻擊戰(zhàn).其中,社區(qū)有500名在職黨員,為了解本社區(qū)2月-3月期間在職黨員參加應(yīng)急執(zhí)勤的情況,社區(qū)針對(duì)執(zhí)勤的次數(shù)隨機(jī)抽取50名在職黨員進(jìn)行調(diào)查,并對(duì)數(shù)據(jù)進(jìn)行了整理、描述和分析,下面給出了部分信息.

其中,應(yīng)急執(zhí)勤次數(shù)在這一組的數(shù)據(jù)是:

20 20 21 22 23 23 23 23 25 26 26 26 27 28 28 29

請(qǐng)根據(jù)所給信息,解答下列問(wèn)題:

1______,______;

2)請(qǐng)補(bǔ)全頻數(shù)分布直方圖;

3)隨機(jī)抽取的50名在職黨員參加應(yīng)急執(zhí)勤次數(shù)的中位數(shù)是______;

4)請(qǐng)估計(jì)2月-3月期間社區(qū)在職黨員參加應(yīng)急執(zhí)勤的次數(shù)不低于30次的約有______人.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知線段,直線垂直平分且交于點(diǎn).以為圓心,長(zhǎng)為半徑作弧,交直線兩點(diǎn),分別連接

(1)根據(jù)題意,補(bǔ)全圖形;

(2)求證:四邊形為正方形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如果的兩個(gè)端點(diǎn)分別在的兩邊上(不與點(diǎn)重合),并且除端點(diǎn)外的所有點(diǎn)都在的內(nèi)部,則稱(chēng)的“連角弧”.

(1)圖1中,是直角,是以為圓心,半徑為1的“連角弧”.

①圖中的長(zhǎng)是______,并在圖中再作一條以為端點(diǎn)、長(zhǎng)度相同的“連角弧”;

②以為端點(diǎn),弧長(zhǎng)最長(zhǎng)的“連角弧”的長(zhǎng)度是_______

(2)如圖2,在平面直角坐標(biāo)系中,點(diǎn),點(diǎn)軸正半軸上,若是半圓,也是連角弧,求的取值范圍.

(3)如圖3,已知點(diǎn)分別在射線上,的“連角弧”,且所在圓的半徑為,直接寫(xiě)出的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】《九章算術(shù)》是中國(guó)傳統(tǒng)數(shù)學(xué)重要的著作之一,奠定了中國(guó)傳統(tǒng)數(shù)學(xué)的基本框架.其中卷九中記載了一個(gè)問(wèn)題:今有圓材,埋在壁中,不知大小,以鋸鋸之,深一寸,鋸道長(zhǎng)一尺,問(wèn)徑幾何?其意思是:如圖,ABO的直徑,弦CDAB于點(diǎn)E,BE1寸,CD1尺,那么直徑AB的長(zhǎng)為多少寸?(注:1尺=10寸)根據(jù)題意,該圓的直徑為_____寸.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校舉辦球賽,分為若干組,其中第一組有A,BC,DE五個(gè)隊(duì).這五個(gè)隊(duì)要進(jìn)行單循環(huán)賽,即每?jī)蓚(gè)隊(duì)之間要進(jìn)行一場(chǎng)比賽,每場(chǎng)比賽采用三局兩勝制,即三局中勝兩局就獲勝.每場(chǎng)比賽勝負(fù)雙方根據(jù)比分會(huì)獲得相應(yīng)的積分,積分均為正整數(shù).這五個(gè)隊(duì)完成所有比賽后得到如下的積分表.

根據(jù)上表回答下列問(wèn)題:

1)第一組一共進(jìn)行了   場(chǎng)比賽,A隊(duì)的獲勝場(chǎng)數(shù)x   

2)當(dāng)B隊(duì)的總積分y=6時(shí),上表中m處應(yīng)填   ,n處應(yīng)填   

3)寫(xiě)出C隊(duì)總積分p的所有可能值為:   

查看答案和解析>>

同步練習(xí)冊(cè)答案