【題目】已知拋物線y=ax2+bx+a+2(a≠0)與x軸交于點(diǎn)A(x1,0),點(diǎn)B(x2,0),(點(diǎn)A在點(diǎn)B的左側(cè)),拋物線的對(duì)稱(chēng)軸為直線x=-1.
(1)若點(diǎn)A的坐標(biāo)為(-3,0),求拋物線的表達(dá)式及點(diǎn)B的坐標(biāo);
(2)C是第三象限的點(diǎn),且點(diǎn)C的橫坐標(biāo)為-2,若拋物線恰好經(jīng)過(guò)點(diǎn)C,直接寫(xiě)出x2的取值范圍;
(3)拋物線的對(duì)稱(chēng)軸與x軸交于點(diǎn)D,點(diǎn)P在拋物線上,且∠DOP=45°,若拋物線上滿(mǎn)足條件的點(diǎn)P恰有4個(gè),結(jié)合圖象,求a的取值范圍.
【答案】(1),(1,0);(2)-1<x2<0;(3)a<-2.
【解析】
(1)由題意可知拋物線的對(duì)稱(chēng)軸為,求出b=2a,將點(diǎn)A的坐標(biāo)代入拋物線的表達(dá)式,即可求解;
(2)根據(jù)題意可得點(diǎn)C在第三象限,即點(diǎn)A在點(diǎn)C和函數(shù)對(duì)稱(chēng)軸之間,故-2<x1<-1,繼而進(jìn)行分析即可求解;
(3)根據(jù)題意可得滿(mǎn)足條件的P在x軸的上方有2個(gè),在x軸的下方也有2個(gè),則拋物線與y軸的交點(diǎn)在x軸的下方,即可求解.
解:(1)拋物線的對(duì)稱(chēng)軸為,解得:b=2a,
故y=ax2+bx+a+2=a(x+1)2+2,
將點(diǎn)A的坐標(biāo)代入上式并解得:,
故拋物線的表達(dá)式為:;
令y=0,即,解得:x=-3或1,
故點(diǎn)B的坐標(biāo)為:(1,0).
(2)由(1)知:,
點(diǎn)C在第三象限,即點(diǎn)C在點(diǎn)A的下方,
即點(diǎn)A在點(diǎn)C和函數(shù)對(duì)稱(chēng)軸之間,故-2<x1<-1,
而,即x2=-2-x1,
故-1<x2<0.
(3)∵拋物線的頂點(diǎn)為(-1,2),
∴點(diǎn)D(-1,0),
∵∠DOP=45°,若拋物線上滿(mǎn)足條件的點(diǎn)P恰有4個(gè),
∴拋物線與x軸的交點(diǎn)在原點(diǎn)的左側(cè),如下圖,
∴滿(mǎn)足條件的P在x軸的上方有2個(gè),在x軸的下方也有2個(gè),
則拋物線與y軸的交點(diǎn)在x軸的下方,
當(dāng)x=0時(shí),,
解得:a<-2,
故a的取值范圍為:a<-2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD內(nèi)接于⊙O,對(duì)角線AC、BD相交于點(diǎn)F,AC是⊙O的直徑,延長(zhǎng)CB到點(diǎn)E,連接AE,∠BAE=∠ADB,AN⊥BD,CM⊥BD,垂足分別為點(diǎn)N、M.
(1)證明:AE是⊙O的切線;
(2)試探究DM與BN的數(shù)量關(guān)系并證明;
(3)若BD=BC,MN=2DM,當(dāng)AE=時(shí),求OF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】五一前夕,某時(shí)裝店老板到廠家選購(gòu)兩種品牌的時(shí)裝,若購(gòu)進(jìn)品牌的時(shí)裝套,品牌的時(shí)裝套,需要元;若購(gòu)進(jìn)品牌的時(shí)裝套,品牌的時(shí)裝套,需要元.
(1)求兩種品牌的時(shí)裝每套進(jìn)價(jià)分別為多少元?
(2)若套品牌的時(shí)裝售價(jià)元,套品牌的時(shí)裝售價(jià)元,時(shí)裝店將購(gòu)進(jìn)的兩種時(shí)裝共套全部售出,所獲利潤(rùn)要不少于元,問(wèn)品牌時(shí)裝至少購(gòu)進(jìn)多少套?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明星期天上午8:00從家出發(fā)到離家36千米的書(shū)城買(mǎi)書(shū),他先從家出發(fā)騎公共自行車(chē)到公交車(chē)站,等了12分鐘的車(chē),然后乘公交車(chē)于9:48分到達(dá)書(shū)城(假設(shè)在整個(gè)過(guò)程中小明騎車(chē)的速度不變,公交車(chē)勻速行駛,小明家、公交車(chē)站、書(shū)城依次在一條筆直的公路旁).如圖是小明從家出發(fā)離公交車(chē)站的路程y(千米)與他從家出發(fā)的時(shí)間x(時(shí))之間的函數(shù)圖象,其中線段AB對(duì)應(yīng)的函教表達(dá)式為y=kx+6.
(1)求小明騎公共自行車(chē)的速度;
(2)求線段CD對(duì)應(yīng)的函數(shù)表達(dá)式;
(3)求出發(fā)時(shí)間x在什么范圍時(shí),小明離公交車(chē)站的路程不超過(guò)3千米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】先閱讀下列材料,再解答問(wèn)題.
尺規(guī)作圖
已知:△ABC,D是邊AB上一點(diǎn),如圖1,
求作:四邊形DBCF,使得四邊形DBCF是平行四邊形.
小明的做法如下:
請(qǐng)你參考小明的做法,再設(shè)計(jì)一一種尺規(guī)作圖的方法(與小明的方法不同),使得畫(huà)出的四邊形DBCF是平行四邊形,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,扇形OAB中,∠AOB=90°,將扇形OAB繞點(diǎn)B逆時(shí)針旋轉(zhuǎn),得到扇形BDC,若點(diǎn)O剛好落在弧AB上的點(diǎn)D處,則的值為( 。
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(2017廣東。┤鐖D,AB是⊙O的直徑,AB=,點(diǎn)E為線段OB上一點(diǎn)(不與O,B重合),作CE⊥OB,交⊙O于點(diǎn)C,垂足為點(diǎn)E,作直徑CD,過(guò)點(diǎn)C的切線交DB的延長(zhǎng)線于點(diǎn)P,AF⊥PC于點(diǎn)F,連接CB.
(1)求證:CB是∠ECP的平分線;
(2)求證:CF=CE;
(3)當(dāng)時(shí),求劣弧的長(zhǎng)度(結(jié)果保留π)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,西安市薦福寺內(nèi)的小雁塔,是中國(guó)早期方形密檐式磚塔的典型作品,并作為絲綢之路的一處重要遺址點(diǎn),被列入《世界遺產(chǎn)名錄》.某周末,小樂(lè)和小夏相約去小雁塔游玩,在休息時(shí),他們想利用所學(xué)知識(shí)測(cè)量小雁塔的高度,于是他們向工作人員借來(lái)測(cè)量工具由于觀測(cè)點(diǎn)與小雁塔底部間的距離不易測(cè)量,于是他們利用太陽(yáng)光照射影子進(jìn)行測(cè)量,小樂(lè)先在小雁塔的影子頂端處豎直立一根長(zhǎng)1.72米的木棒,并測(cè)得此時(shí)木棒的影長(zhǎng)米;然后小夏在的延長(zhǎng)線上找出一點(diǎn),使得、、三點(diǎn)在同一直線上,并測(cè)得米已知圖中所有點(diǎn)均在同一平面內(nèi),,,根據(jù)以上測(cè)量過(guò)程及數(shù)據(jù),請(qǐng)你幫他們求出小雁塔的高度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】改革開(kāi)放以來(lái),人們的支付方式發(fā)生了巨大轉(zhuǎn)變,近年來(lái),移動(dòng)支付已成為主要的支付方式之一,為了解某校學(xué)生上個(gè)月兩種移動(dòng)支付方式的使用情況,從全校名學(xué)生中隨機(jī)抽取了人,發(fā)現(xiàn)樣本中兩種支付方式都不使用的有人,樣本中僅使用種支付方式和僅使用種支付方式的學(xué)生的支付金額(元)的分布情況如下:
支付金額(元) 支付方式 | |||
僅使用 | 人 | 人 | 人 |
僅使用 | 人 | 人 | 人 |
下面有四個(gè)推斷:
①?gòu)臉颖局惺褂靡苿?dòng)支付的學(xué)生中隨機(jī)抽取一名學(xué)生,該生使用A支付方式的概率大于他使用B支付方式的概率;
②根據(jù)樣本數(shù)據(jù)估計(jì),全校1000名學(xué)生中.同時(shí)使用A、B兩種支付方式的大約有400人;
③樣本中僅使用A種支付方式的同學(xué),上個(gè)月的支付金額的中位數(shù)一定不超過(guò)1000元;
④樣本中僅使用B種支付方式的同學(xué),上個(gè)月的支付金額的平均數(shù)一定不低于1000元.其中合理的是( )
A.①③B.②④C.①②③D.①②③④
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com