【題目】如圖,直線,點A1坐標(biāo)為(1,0),過點A1x軸的垂線交直線于點B1B,以原點O為圓心,OB1長為半徑畫弧交x軸于點A2;再過點A2x的垂線交直線于點B2以原點O為圓心,OB2長為半徑畫弧交x軸于點A3,…,按此做法進(jìn)行下去,點A5的坐標(biāo)為( )

A. (16,0) B. (12,0) C. (8,0) D. (32,0)

【答案】A

【解析】

A1坐標(biāo)為(1,0),且B1A1⊥x軸,∴B1的橫坐標(biāo)為1,將其橫坐標(biāo)代入直線解析式就可以求出B1的坐標(biāo),就可以求出A1B1的值,OA1的值,根據(jù)銳角三角函數(shù)值就可以求出∠xOB3的度數(shù),從而求出OB1的值,就可以求出OA2值,同理可以求出OB2、OB3,從而尋找出點A2、A3的坐標(biāo)規(guī)律,最后求出A5的坐標(biāo)為.故選A

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線 y=-2x4分別與 y 軸、x 軸交于點 A、點 B,點 C 的坐標(biāo)為(2,0),D 為線段 AB上一動點,連接 CD y 軸于點 E

1)求出點 A、點 B 的坐標(biāo);

2)若,求點 D 的坐標(biāo);

3)在(2)的條件下,點 N x 軸上,直線 AB 上是否存在點 M,使以 M,N,D,E 為頂點的四邊形是平行四邊形?若存在,請直接寫出 M 點的坐標(biāo);若不存在,請說明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,BC >AC,點DBC上,且CA=CD∠ACB的平分線交AD于點F,EAB的中點.

1)求證:EF∥BD

2)若∠ACB=60°,AC=8,BC=12,求四邊形BDFE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,CD與⊙O相切于點C,與AB的延長線交于D.

(1)求證:ADC∽△CDB;

(2)若AC=2,AB=CD,求⊙O半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將矩形ABCD繞點A順時針旋轉(zhuǎn),得到矩形AB′C′D′, C的對應(yīng)點 C′恰好落在CB的延長線上,邊AB交邊 C′D′于點E.

(1)求證:BC=BC′;

(2) AB=2,BC=1,求AE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1是一輛吊車的實物圖,圖2是其工作示意圖,AC是可以伸縮的起重臂,其轉(zhuǎn)動點A離地面BD的高度AH3.4m.當(dāng)起重臂AC長度為9m,張角∠HAC118°時,求操作平臺C離地面的高度(結(jié)果保留小數(shù)點后一位:參考數(shù)據(jù):sin28°≈0.47,cos28°≈0.88,tan28°≈0.53)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是某路燈在鉛垂面內(nèi)的示意圖,燈柱AC的高為11米,燈桿AB與燈柱AC的夾角∠A=120°,路燈采用錐形燈罩,在地面上的照射區(qū)域DE長為18米,從D,E兩處測得路燈B的仰角分別為αβ,且tanα=6,tanβ=求燈桿AB的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,DC⊙O的直徑,點B在圓上,直線ABCD延長線于點A,且∠ABD=∠C.

(1)求證:AB⊙O的切線;

(2)若AB=4cm,AD=2cm,求CD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O是△ABC的內(nèi)切圓,切點分別為D、E、F,A=80°,點P為⊙O上任意一點(不與E、F重合),則∠EPF=______

查看答案和解析>>

同步練習(xí)冊答案