【題目】已知,如圖,△ABC中,∠C=90°,E為BC邊中點(diǎn).
(1)尺規(guī)作圖:以AC邊為直徑,作⊙O,交AB于點(diǎn)D(保留作圖痕跡,標(biāo)上相應(yīng)的字母,可不寫作法);
(2)連結(jié)DE,求證:DE為⊙O的切線;
(3)若AD=4,BD=,求DE的長.
【答案】(1)作圖見解析;(2)證明見解析;(3)
【解析】試題分析:(1)作AC的垂直平分線,垂足為O,然后以O點(diǎn)為圓心,OA為半徑作圓即可;
(2)如圖2,連結(jié)OD,CD,根據(jù)圓周角定理得到∠ADC=90°,再根據(jù)斜邊上的中線等于斜邊的一半得到DE=EC=BE,則利用等腰三角形的性質(zhì)得∠1=∠2,加上∠3=∠4,則∠1+∠3=∠2+∠4=90°,于是可根據(jù)切線的判定定理可判斷DE為⊙O的切線;
(3)證明Rt△BDC∽Rt△BCA,利用相似比計(jì)算出BC=,然后利用斜邊上的中線等于斜邊的一半即可得到DE的長.
試題解析:(1)解:如圖1,
(2)證明:如圖2,連結(jié)OD,CD,
∵AC邊為直徑,
∴∠ADC=90°,
而E為BC邊中點(diǎn),
∴DE為Rt△BDC斜邊BC上的中線,
∴DE=EC=BE,
∴∠1=∠2,
∵OC=OD,
∴∠3=∠4,
∴∠1+∠3=∠2+∠4=∠ACB=90°,
∴OD⊥DE,
∴DE為⊙O的切線;
(3)解:∵∠DBC=∠CBA,
∴Rt△BDC∽Rt△BCA,
∴BC:AB=BD:BC,即BC:(4+)=:BC,
∴BC=,
∴DE=BC=
.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】平面直角坐標(biāo)系內(nèi) AB∥y 軸,AB=5,點(diǎn) A 的坐標(biāo)為(-5,3),則點(diǎn) B 的坐標(biāo)為( )
A. (-5,8) B. (0,3)
C. (-5,8)或(-5,-2) D. (0,3)或(-10,3)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠ABC=45,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于E,與CD相交于點(diǎn)F,H是BC邊的中點(diǎn),連結(jié)DH,與BE相交于點(diǎn)G.
(1)求證:BF=AC;
(2)求證:CE=BF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列運(yùn)算正確的是( )
A.2a+3b=5ab
B.3x2y﹣2x2y=1
C.(2a2)3=6a6
D.5x3÷x2=5x
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,AB=4,E為CD上一動(dòng)點(diǎn),AE交BD于F,過F作FH⊥AE于H,過H作GH⊥BD于G,下列有四個(gè)結(jié)論:①AF=FH,②∠HAE=45°,③BD=2FG,④△CEH的周長為定值,其中正確的結(jié)論有( 。
A. ①②③ B. ①②④ C. ①③④ D. ①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一隊(duì)卡車運(yùn)一批貨物,若每輛卡車裝7噸貨物,則剩余10噸貨物裝不完;若每輛卡車裝8噸貨物,則最后一輛卡車只裝3噸貨物就裝完了這批貨物,那么這批貨物共有噸.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明設(shè)計(jì)了點(diǎn)做圓周運(yùn)動(dòng)的一個(gè)動(dòng)畫游戲,如上圖所示,甲、乙兩點(diǎn)分別從直徑的兩端點(diǎn)A、B以順時(shí)針、逆時(shí)針的方向同時(shí)沿圓周運(yùn)動(dòng),甲運(yùn)動(dòng)的路程l(cm)與時(shí)間t(s)滿足關(guān)系:l=t2+t(t≥0),乙以4cm/s的速度勻速運(yùn)動(dòng),半圓的長度為21cm.
(1)甲運(yùn)動(dòng)4s后的路程是多少?
(2)甲、乙從開始運(yùn)動(dòng)到第一次相遇時(shí),它們運(yùn)動(dòng)了多少時(shí)間?
(3)甲、乙從開始運(yùn)動(dòng)到第二次相遇時(shí),它們運(yùn)動(dòng)了多少時(shí)間?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com