【題目】如圖,等腰Rt△ABC中,∠BAC=90°,AD⊥BC于D,∠ABC的平分線分別交AC、AD于E、F兩點(diǎn),M為EF的中點(diǎn),延長(zhǎng)AM交BC于點(diǎn)N,連接DM,下列結(jié)論:①AE=AF;②DF=DN;③AE=CN;④△AMD和△DMN的面積相等,其中錯(cuò)誤的結(jié)論個(gè)數(shù)是( 。
A.3個(gè)B.2個(gè)C.1個(gè)D.0個(gè)
【答案】D
【解析】
根據(jù)等腰直角三角形的性質(zhì)及角平分線的定義求得∠ABE=∠CBE=∠ABC=22.5°,繼而可得∠BFD=∠AEB=90°-22.5°=67.5°,即可判斷①;證出△ADN≌△BFD,可判斷②;證△ABF≌△ACN,可判斷③;求出∠BAN=∠BNA =67.5°,可得BA=BN,根據(jù)等腰三角形三線合一得AM=MN,可判斷④.
解:∵等腰Rt△ABC中,∠BAC=90°,AD⊥BC于D,
∴AB=AC,∠BCA=∠ABC=45°=∠DAC=∠DAB,AD=BD=CD,AD⊥BC
∵BE平分∠ABC
∴∠ABE=∠CBE=∠ABC =22.5°
∵AB⊥AC,AD⊥BC
∴∠AEB=67.5°,∠BFD=67.5°=∠AFE
∴∠AFE=∠AEB
∴AF=AE
故①正確;
∵M是EF的中點(diǎn),AE=AF
∴AM⊥BE,∠DAM=∠CAM=22.5°
∴∠DAN=∠CBE=22.5°,且∠ADB=∠ADN,AD=BD
∴△ADN≌△BDF
∴DF=DN
故②正確;
∵AB=AC,∠ACB=∠DAB=45°,∠ABF=∠CAN=22.5°
∴△ABF≌△ACN
∴AF=CN,
∵AE=AF
∴AE=CN
故③正確;
∵∠BAN=∠BAD+∠DAN=67.5°,∠BNA=∠ACB+∠NAC=67.5°
∴∠BAN=∠BNA
∴BA=BN
∵BE平分∠ABC
∴AM=MN
∴△AMD和△DMN的面積相等
故④正確.
錯(cuò)誤的結(jié)論個(gè)數(shù)是0,
故選:D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直角坐標(biāo)系中,在邊長(zhǎng)為1的正方形網(wǎng)格中,△AOB的頂點(diǎn)均在格點(diǎn)上,點(diǎn)A,B的坐標(biāo)分別是A(3,1),B(2,3).
(1)請(qǐng)?jiān)趫D中畫(huà)出△AOB關(guān)于y軸的對(duì)稱△A′OB′,點(diǎn)A′的坐標(biāo)為 ,點(diǎn)B′的坐標(biāo)為 ;
(2)請(qǐng)寫(xiě)出A′點(diǎn)關(guān)于x軸的對(duì)稱點(diǎn)A′'的坐標(biāo)為 ;
(3)求△A′OB′的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC與△DCE有公共頂點(diǎn)C,AB=CD,BC=CE,∠ABC=∠DCE=90°.
(1)如圖1,當(dāng)點(diǎn)D在BC延長(zhǎng)線上時(shí).
①求證:△ABC≌△DCE.
②判斷AC與DE的位置關(guān)系,并說(shuō)明理由.
(2)如圖2,△CDE從(1)中位置開(kāi)始繞點(diǎn)C順時(shí)針旋轉(zhuǎn),當(dāng)點(diǎn)D落在BC邊上時(shí)停止.
①若∠A=60°,記旋轉(zhuǎn)的度數(shù)為,當(dāng)為何值時(shí),DE與△ABC一邊平行.
②如圖3,若AB=c, BC=a, AC=b, a>c,邊BC,DE交于點(diǎn)F,求整個(gè)運(yùn)動(dòng)過(guò)程中,F在BC上的運(yùn)動(dòng)路程(用含a, b, c的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,點(diǎn)D、E、F分別在邊AB、BC、CA上,且DE∥CA,DF∥BA.
下列四種說(shuō)法:①四邊形AEDF是平行四邊形;②如果∠BAC=90°,那么四邊形AEDF是矩形;③如果AD平分∠BAC,那么四邊形AEDF是菱形;④如果AD⊥BC且AB=AC,那么四邊形AEDF是菱形.
其中,正確的有( ) 個(gè).
A.1 B.2 C.3 D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“中華人民共和國(guó)道路交通管理?xiàng)l例”規(guī)定:小汽車(chē)在城街路上行駛速度不得超過(guò)km/h.如圖,一輛小汽車(chē)在一條城市街路上直道行駛,某一時(shí)刻剛好行駛到路對(duì)面車(chē)速檢測(cè)儀正前方m處,過(guò)了2s后,測(cè)得小汽車(chē)與車(chē)速檢測(cè)儀間距離為m,這輛小汽車(chē)超速了嗎?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在一款名為超級(jí)瑪麗的游戲中,瑪麗到達(dá)一個(gè)高為10米的高臺(tái)A,利用旗桿頂部的繩索,劃過(guò)90°到達(dá)與高臺(tái)A水平距離為17米,高為3米的矮臺(tái)B,求旗桿的高度OM和瑪麗在蕩繩索過(guò)程中離地面的最低點(diǎn)的高度MN.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在等邊三角形ABC中,點(diǎn)D是BC的中點(diǎn),點(diǎn)E、F分別是邊AB、AC(含線段AB、AC的端點(diǎn))上的動(dòng)點(diǎn),且∠EDF=120°,小明和小慧對(duì)這個(gè)圖形展開(kāi)如下研究:
問(wèn)題初探:(1)如圖1,小明發(fā)現(xiàn):當(dāng)∠DEB=90°時(shí),BE+CF=nAB,則n的值為 ;
問(wèn)題再探:(2)如圖2,在點(diǎn)E、F的運(yùn)動(dòng)過(guò)程中,小慧發(fā)現(xiàn)兩個(gè)有趣的結(jié)論:
①DE始終等于DF;②BE與CF的和始終不變;請(qǐng)你選擇其中一個(gè)結(jié)論加以證明.
成果運(yùn)用:(3)若邊長(zhǎng)AB=8,在點(diǎn)E、F的運(yùn)動(dòng)過(guò)程中,記四邊形DEAF的周長(zhǎng)為L,L=DE+EA+AF+FD,則周長(zhǎng)L 取最大值和最小值時(shí)E點(diǎn)的位置?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在一副撲克牌中,拿出紅桃2、紅桃3、紅桃4、紅桃5四張牌,洗勻后,小明從中隨機(jī)摸出一張,記下牌面上的數(shù)字為x,然后放回并洗勻,再由小華隨機(jī)摸出一張,記下牌面上的數(shù)字為y,組成一對(duì)數(shù)(x,y).用列表法或樹(shù)形圖表示出(x,y)的所用可能出現(xiàn)的結(jié)果;求小明、小華各摸一次撲克牌所確定的一對(duì)數(shù)是方程x+y=5的解的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=ax2+bx+與直線AB交于點(diǎn)A(﹣1,0),B(4,),點(diǎn)D是拋物線A、B兩點(diǎn)間部分上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)A、B重合),直線CD與y軸平行,交直線AB于點(diǎn)C,連接AD,BD.
(1)求拋物線的表達(dá)式;
(2)設(shè)點(diǎn)D的橫坐標(biāo)為m,△ADB的面積為S,求S關(guān)于m的函數(shù)關(guān)系式,并求出當(dāng)S取最大值時(shí)的點(diǎn)C的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com