【題目】“中華人民共和國(guó)道路交通管理?xiàng)l例”規(guī)定:小汽車在城街路上行駛速度不得超過(guò)km/h.如圖,一輛小汽車在一條城市街路上直道行駛,某一時(shí)刻剛好行駛到路對(duì)面車速檢測(cè)儀正前方m處,過(guò)了2s后,測(cè)得小汽車與車速檢測(cè)儀間距離為m,這輛小汽車超速了嗎?

【答案】見(jiàn)解析

【解析】

本題求小汽車是否超速,其實(shí)就是求BC的距離,直角三角形ABC中,有斜邊AB的長(zhǎng),有直角邊AC的長(zhǎng),那么BC的長(zhǎng)就很容易求得,根據(jù)小汽車用2s行駛的路程為BC,那么可求出小汽車的速度,然后再判斷是否超速了.

解:在RtABC中,AC=30m,AB=50m;
據(jù)勾股定理可得:
BC=40m
∴小汽車的速度為v==20m/s=20×3.6km/h=72km/h);
72km/h)>70km/h);
∴這輛小汽車超速行駛.
答:這輛小汽車超速了.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB=AC,∠A=36°,直線MN垂直平分ACABM,

1)求∠BCM的度數(shù);(2)若AB=5,BC=3,求△BCM的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩地相距300km,一輛貨車和一輛轎車先后從甲地出發(fā)向乙地.如圖,線段OA表示貨車離甲地距離y(km)與時(shí)間x(h)之間的函數(shù)關(guān)系,折線BCDE表示轎車離甲地距離y(km)與時(shí)間x(h)之間的函數(shù)關(guān)系.請(qǐng)根據(jù)圖象,解答下列問(wèn)題:

(1)線段CD表示轎車在途中停留了 h;

(2)求線段DE對(duì)應(yīng)的函數(shù)解析式;

(3)求轎車從甲地出發(fā)后經(jīng)過(guò)多長(zhǎng)時(shí)間追上貨車.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市為了鼓勵(lì)居民節(jié)約用水,采用分階段計(jì)費(fèi)的方法按月計(jì)算每戶家庭的水費(fèi):月用水量不超過(guò)20m3時(shí),按2/m3計(jì)算;月用水量超過(guò)20m3時(shí),其中的20m3仍按2/m3計(jì)算,超過(guò)部分按2.6/m3計(jì)算.設(shè)某戶家庭月用水量xm3

月份

4

5

6

用水量

15

17

21

(1)用含x的式子表示:

當(dāng)0≤x≤20時(shí),水費(fèi)為   元;

當(dāng)x>20時(shí),水費(fèi)為   元.

(2)小花家第二季度用水情況如上表,小花家這個(gè)季度共繳納水費(fèi)多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠A=36°,AB=AC,CD是△ACB的角平分線.若在邊AC上截取CE=CB,連接DE,則圖中等腰三角形共有( 。

A. 2個(gè)B. 3個(gè)C. 4個(gè)D. 5個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,用一根12米長(zhǎng)的木材做一個(gè)中間有一條橫檔的日字形窗戶.設(shè)ABx米.

(1)用含有x的代數(shù)式表示線段AC的長(zhǎng).

(2)若使透進(jìn)窗戶的光線達(dá)到6平方米,則窗戶的長(zhǎng)和寬各為多少?

(3)透進(jìn)窗戶的光線能達(dá)到9平方米嗎?若能,請(qǐng)求出這個(gè)窗戶的長(zhǎng)和寬;若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將矩形ABCD(紙片)折疊,使點(diǎn)BAD邊上的點(diǎn)K重合,EG為折痕;點(diǎn)CAD邊上的點(diǎn)K重合,FH為折痕.已知∠1=67.5°,2=75°,EF=+1,求BC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在矩形ABCD中,AB=12,P是邊AB上一點(diǎn),把PBC沿直線PC折疊,頂點(diǎn)B的對(duì)應(yīng)點(diǎn)是點(diǎn)G,過(guò)點(diǎn)BBECG,垂足為E且在AD上,BEPC于點(diǎn)F.

(1)如圖1,若點(diǎn)EAD的中點(diǎn),求證:AEB≌△DEC;

(2)如圖2,①求證:BP=BF;

②當(dāng)AD=25,且AE<DE時(shí),求cosPCB的值;

③當(dāng)BP=9時(shí),求BEEF的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】探究

(1)已知如圖1,若ABCD,P為平行線內(nèi)的一點(diǎn)請(qǐng)你判斷∠B+P+D= 度,并說(shuō)明理由.

(2)如圖2,若ABCD ,P1、P2為平行線內(nèi)的兩個(gè)點(diǎn),請(qǐng)求出∠B+P1+P2+D= (不需要說(shuō)明理由)

(3)如圖3,如此類推若ABCD,P1、、P2、P3P4、……Pn為平行線內(nèi)的n個(gè)點(diǎn),請(qǐng)求出∠B+P1+P2+P3+……+Pn-1+Pn+D= (不需要說(shuō)明理由)

查看答案和解析>>

同步練習(xí)冊(cè)答案