勾股定理是幾何中的一個重要定理.在我國古算書《周髀算經(jīng)》中就有“若勾三,股四,則弦五”的記載.如圖1是由邊長相等的小正方形和直角三角形構成的,可以用其面積關系驗證勾股定理.圖2是由圖1放入矩形內(nèi)得到的,∠BAC=90°,AB=3,AC=4,點D,E,F(xiàn),G,H,I都在矩形KLMJ的邊上,則矩形KLMJ的面積為
110
110
分析:延長AB交KF于點O,延長AC交GM于點P,可得四邊形AOLP是正方形,然后求出正方形的邊長,再求出矩形KLMJ的長與寬,然后根據(jù)矩形的面積公式列式計算即可得解.
解答:解:如圖,延長AB交KF于點O,延長AC交GM于點P,
所以,四邊形AOLP是正方形,
邊長AO=AB+AC=3+4=7,
所以,KL=3+7=10,LM=4+7=11,
因此,矩形KLMJ的面積為10×11=110.
故答案是:110.
點評:本題考查了勾股定理的證明,作出輔助線構造出正方形是解題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:閱讀理解

閱讀材料并解答問題:
我國是最早了解和應用勾股定理的國家之一,古代印度、希臘、阿拉伯等許多國家也都很重視對勾股定理的研究和應用,古希臘數(shù)學家畢達哥拉斯首先證明了勾股定理,在西方,勾股定理又稱為“畢達哥拉斯定理”.
關于勾股定理的研究還有一個很重要的內(nèi)容是勾股數(shù)組,在《幾何》課本中我們已經(jīng)了解到,“能夠成為直角三角形三條邊的三個正整數(shù)稱為勾股數(shù)”,以下是畢達哥拉斯等學派研究出的確定勾股數(shù)組的兩種方法:
方法1:若m為奇數(shù)(m≥3),則a=m,b=
1
2
(m2-1)和c=
1
2
(m2+1)是勾股數(shù).
方法2:若任取兩個正整數(shù)m和n(m>n),則a=m2-n2,b=2mn,c=m2+n2是勾股數(shù).
(1)在以上兩種方法中任選一種,證明以a,b,c為邊長的△ABC是直角三角形;
(2)請根據(jù)方法1和方法2按規(guī)律填寫下列表格:
精英家教網(wǎng)
(3)某園林管理處要在一塊綠地上植樹,使之構成如下圖所示的圖案景觀,該圖案由四個全等的直角三角形組成,要求每個三角形頂點處都植一棵樹,各邊上相鄰兩棵樹之間的距離均為1米,如果每個三角形最短邊上都植6棵樹,且每個三角形的各邊長之比為5:12:13,那么這四個直角三角形的邊長共需植樹
 
棵.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

5、數(shù)學大師陳省身于2004年12月3日在天津逝世,陳省身教授在微分幾何等領域做出了杰出的貢獻,是獲得沃爾夫獎的惟一華人,他曾經(jīng)指出,平面幾何中有兩個重要定理,一個是勾股定理,另一個是三角形內(nèi)角和定理,后者表明平面三角形可以千變?nèi)f化,但是三個內(nèi)角的和是不變量,下列幾個關于不變量的敘述:
(1)邊長確定的平行四邊形ABCD,當A變化時,其任意一組對角之和是不變的;
(2)當多邊形的邊數(shù)不斷增加時,它的外角和不變;
(3)當△ABC繞頂點A旋轉時,△ABC各內(nèi)角的大小不變;
(4)在放大鏡下觀察,含角α的圖形放大時,角α的大小不變;
(5)當圓的半徑變化時,圓的周長與半徑的比值不變;
(6)當圓的半徑變化時,圓的周長與面積的比值不變.
其中錯誤的敘述有(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

勾股定理是初等幾何中的一個基本定理.這個定理有十分悠久的歷史,兩千多年來,人們對勾股定理的證明頗感興趣,我國古代三國時期吳國的數(shù)學家趙爽創(chuàng)造的弦圖,是最早證明勾股定理的方法,所謂弦圖是指在正方形的每一邊上各取一個點,再連接四點構成一個正方形,它可以驗證勾股定理.在如圖的弦圖中,已知:正方形EFGH的頂點E、F、G、H分別在正方形ABCD的邊DA、AB、BC、CD上.若正方形ABCD的面積=16,AE=1;則正方形EFGH的面積=
10
10

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:填空題

勾股定理是初等幾何中的一個基本定理.這個定理有十分悠久的歷史,兩千多年來,人們對勾股定理的證明頗感興趣,我國古代三國時期吳國的數(shù)學家趙爽創(chuàng)造的弦圖,是最早證明勾股定理的方法,所謂弦圖是指在正方形的每一邊上各取一個點,再連接四點構成一個正方形,它可以驗證勾股定理.在如圖的弦圖中,已知:正方形EFGH的頂點E、F、G、H分別在正方形ABCD的邊DA、AB、BC、CD上.若正方形ABCD的面積=16,AE=1;則正方形EFGH的面積=________.

查看答案和解析>>

科目:初中數(shù)學 來源:2012年浙江省溫州市平陽縣中考數(shù)學基礎訓練卷(四)(解析版) 題型:填空題

勾股定理是初等幾何中的一個基本定理.這個定理有十分悠久的歷史,兩千多年來,人們對勾股定理的證明頗感興趣,我國古代三國時期吳國的數(shù)學家趙爽創(chuàng)造的弦圖,是最早證明勾股定理的方法,所謂弦圖是指在正方形的每一邊上各取一個點,再連接四點構成一個正方形,它可以驗證勾股定理.在如圖的弦圖中,已知:正方形EFGH的頂點E、F、G、H分別在正方形ABCD的邊DA、AB、BC、CD上.若正方形ABCD的面積=16,AE=1;則正方形EFGH的面積=   

查看答案和解析>>

同步練習冊答案