【題目】在菱形ABCD中,B=60E是邊CD上一點(diǎn),以CE為邊作等邊△CEF

1 如圖1,當(dāng)CEAD ,CF=時(shí),求菱形ABCD的面積;

2 如圖2,過(guò)點(diǎn)ECEF的平分線交CFH,連接DH,并延長(zhǎng)DHAC的延長(zhǎng)交于點(diǎn)P,若ECD=15,求證:

【答案】1;(2)見解析.

【解析】

1)由等邊三角形的性質(zhì)得出CE的長(zhǎng).再由菱形的性質(zhì)及∠B=60得到CD的長(zhǎng),根據(jù)菱形的面積公式即可得出結(jié)論.

2)連接DF,過(guò)FFGCDG.由菱形的性質(zhì)及∠B=60得到△ABC和△ACD是等邊三角形,即可證明ACEDCF,進(jìn)而得到DF//AP,由平行線的性質(zhì)得到∠FDH=CPH

由等邊三角形的性質(zhì)得到CH=HF.可證明CHPFHD,得到DF=CP.在RtDGF中,由∠FDC=60,可得.在等腰RtCFG中,有,從而可以得出結(jié)論.

1)∵等邊CEF,CF=,∴CE=CF=

∵菱形ABCD,∠B=60,∴∠D=B=60AD=CD

CEAD,∴∠ECD=30,∴CD=4,∴AD=4,∴S菱形ABCD=ADCE=

2)連接DF,過(guò)FFGCDG

∵菱形ABCD,∴AB=BC=CD=AD

∵∠B=60,∴△ABC和△ACD是等邊三角形,∴∠CAD=ACD=60

∵等邊CEF,∴CE=CF,∠ECF=60,∴∠ACD-ECD=ECF-ECD即∠ACE=DCF

ACEDCF中,,∴ACEDCF,∴∠FDC=60

∵∠ACD=60,∴DF//AP,∴∠FDH=CPH

∵等邊CEF,EH平分∠CEF,∴CH=HF

CHPFHD中,∵∠FDH=CPH,∠FHD=CHP,HF=CH,∴CHPFHD,∴DF=CP

∵∠FDC=60,FGCD,∴

∵∠ECF=60,∠ECD=15,∴∠DCF=45

∵∠DCF=45,FGCD,∴,∴

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在Rt△ABC中,∠ACB=90°,AC=2,BC=4.點(diǎn)D是線段BC上的一個(gè)動(dòng)點(diǎn).點(diǎn)D與點(diǎn)B、C不重合,過(guò)點(diǎn)D作DE⊥BC交AB于點(diǎn)E,將△ABC沿著直線DE翻折,使點(diǎn)B落在直線BC上的F點(diǎn).

(1)設(shè)∠BAC=α(如圖①),求∠AEF的大;(用含α的代數(shù)式表示)

(2)當(dāng)點(diǎn)F與點(diǎn)C重合時(shí)(如圖②),求線段DE的長(zhǎng)度;

(3)設(shè)BD=x,△EDF與△ABC重疊部分的面積為S,試求出S與x之間函數(shù)關(guān)系式,并寫出自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為緩解油價(jià)上漲給出租車行業(yè)帶來(lái)的成本壓力,某市擬調(diào)整出租車運(yùn)價(jià),調(diào)整方案見下列表格及圖象(其中為常數(shù))

行駛路程

收費(fèi)標(biāo)準(zhǔn)

調(diào)價(jià)前

調(diào)價(jià)后

不超過(guò)的部分

起步價(jià)7

起步價(jià)

超過(guò)不超出的部分

每公里2

每公里

超出的部分

每公里

設(shè)行駛路程為,調(diào)價(jià)前的運(yùn)價(jià)(元),調(diào)價(jià)后運(yùn)價(jià)(元),如圖,折線表示之間的函數(shù)關(guān)系式,線段表示當(dāng)時(shí),的函數(shù)關(guān)系式,根據(jù)圖表信息,完成下列各題:

①填空: , ,

②當(dāng)時(shí),求的關(guān)系,補(bǔ)充圖中該函數(shù)的圖像;

③函數(shù)的圖象是否存在交點(diǎn)?若存在,求出交點(diǎn)的坐標(biāo),并說(shuō)明該點(diǎn)的實(shí)際意義;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明和小華先后從甲地出發(fā)到乙地,小明先乘坐客車出發(fā)1小時(shí),小華才開車前住乙地,小華到達(dá)乙地后立即按原速?gòu)囊业胤祷丶椎。已知小明、小華離甲地距離y(千米)與小明出發(fā)時(shí)間x(小時(shí))之間的函數(shù)關(guān)系如圖所示,請(qǐng)根據(jù)圖象解答下列問題:小華從乙地返回后再經(jīng)過(guò)___小時(shí)與小明相遇.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,CDAB,垂足為D. 點(diǎn)EBC上,EFAB,垂足為F,∠1=2.

(1)試說(shuō)明DGBC的理由;

(2)如果∠B54°,且∠ACD=35°,求的∠3度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某蔬菜加工公司先后兩批次收購(gòu)蒜薹(tái)共100噸.第一批蒜薹價(jià)格為4000元/噸;因蒜薹大量上市,第二批價(jià)格跌至1000元/噸.這兩批蒜薹共用去16萬(wàn)元.

(1)求兩批次購(gòu)進(jìn)蒜薹各多少噸;

(2)公司收購(gòu)后對(duì)蒜薹進(jìn)行加工,分為粗加工和精加工兩種:粗加工每噸利潤(rùn)400元,精加工每噸利潤(rùn)1000元.要求精加工數(shù)量不多于粗加工數(shù)量的三倍.為獲得最大利潤(rùn),精加工數(shù)量應(yīng)為多少噸?最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是小強(qiáng)洗漱時(shí)的側(cè)面示意圖,洗漱臺(tái)(矩形ABCD)靠墻擺放,高AD=80cm,寬AB=48cm,小強(qiáng)身高166cm,下半身FG=100cm,洗漱時(shí)下半身與地面成80°(∠FGK=80°),身體前傾成125°(∠EFG=125°),腳與洗漱臺(tái)距離GC=15cm(點(diǎn)D,C,G,K在同一直線上).

(1)此時(shí)小強(qiáng)頭部E點(diǎn)與地面DK相距多少?

(2)小強(qiáng)希望他的頭部E恰好在洗漱盆AB的中點(diǎn)O的正上方,他應(yīng)向前或后退多少?

(sin80°≈0.98,cos80°≈0.17, ≈1.41,結(jié)果精確到0.1cm)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在數(shù)學(xué)學(xué)習(xí)中,及時(shí)對(duì)知識(shí)進(jìn)行歸納和整理是提高學(xué)習(xí)效率的重要方法,善于學(xué)習(xí)的小明在學(xué)習(xí)了一次方程(組)、一元一次不等式和一次函數(shù)后,對(duì)照?qǐng)D形,把相關(guān)知識(shí)歸納整理如下:

一次函數(shù)與方程(組)的關(guān)系:

1)一次函數(shù)的解析式就是一個(gè)二元一次方程;

2)點(diǎn)B的橫坐標(biāo)是方程kx+b=0的解;

3)點(diǎn)C的坐標(biāo)(xy)中x,y的值是方程組①的解.

一次函數(shù)與不等式的關(guān)系:

1)函數(shù)y=kx+b的函數(shù)值y大于0時(shí),自變量x的取值范圍就是不等式kx+b0的解集;

2)函數(shù)y=kx+b的函數(shù)值y小于0時(shí),自變量x的取值范圍就是不等式②的解集.

(一)請(qǐng)你根據(jù)以上歸納整理的內(nèi)容在下面的數(shù)字序號(hào)后寫出相應(yīng)的結(jié)論:① ;② ;

(二)如果點(diǎn)B坐標(biāo)為(20),C坐標(biāo)為(13);

①直接寫出kx+b≥k1x+b1的解集;

②求直線BC的函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知直線y=x與反比例函數(shù)y=的圖象交于A,B兩點(diǎn),且點(diǎn)A的橫坐標(biāo)為.在坐標(biāo)軸上找一點(diǎn)C,直線AB上找一點(diǎn)D,在雙曲線y=找一點(diǎn)E,若以O,C,D,E為頂點(diǎn)的四邊形是有一組對(duì)角為60的菱形,那么符合條件點(diǎn)D的坐標(biāo)為___.

查看答案和解析>>

同步練習(xí)冊(cè)答案