【題目】如圖,△ABC為銳角三角形,AD是BC邊上的高,正方形EFGH的一邊FG在BC上,頂點E、H分別在AB、AC上,已知BC=40cm,AD=30cm.
(1)求證:△AEH∽△ABC;
(2)求這個正方形的邊長與面積.
【答案】
(1)證明:證明:∵四邊形EFGH是正方形,
∴EH∥BC,
∴∠AEH=∠B,∠AHE=∠C,
∴△AEH∽△ABC
(2)解:如圖 設AD與EH交于點M.
∵∠EFD=∠FEM=∠FDM=90°,
∴四邊形EFDM是矩形,
∴EF=DM,設正方形EFGH的邊長為x,
∵△AEH∽△ABC,
∴ ,
∴ ,
∴x= ,
∴正方形EFGH的邊長為 cm,面積為 cm2
【解析】(1)根據EH∥BC即可證明.(2)如圖設AD與EH交于點M,首先證明四邊形EFDM是矩形,設正方形邊長為x,再利用△AEH∽△ABC,得 = ,列出方程即可解決問題.本題考查正方形的性質、相似三角形的判定和性質等知識,解題的關鍵是利用相似三角形的相似比對于高的比,學會用方程的思想解決問題,屬于中考?碱}型.
科目:初中數學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點C、D在⊙O上,∠A=2∠BCD,點E在AB的延長線上,∠AED=∠ABC
(1)求證:DE與⊙O相切;
(2)若BF=2,DF= ,求⊙O的半徑.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】楊陽同學沿一段筆直的人行道行走,在由A步行到達B處的過程中,通過隔離帶的空隙O,剛好瀏覽完對面人行道宣傳墻上的社會主義核心價值觀標語,其具體信息匯集如下: 如圖,AB∥OH∥CD,相鄰兩平行線間的距離相等,AC,BD相交于O,OD⊥CD.垂足為D,已知AB=20米,請根據上述信息求標語CD的長度.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在邊長為1個單位長度的小正方形組成的兩格中,點A、B、C都是格點.
(1)將△ABC向左平移6個單位長度得到得到△A1B1C1;
(2)將△ABC繞點O按逆時針方向旋轉180°得到△A2B2C2 , 請畫出△A2B2C2 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,C是⊙O上一點,AD垂直于過點C的切線,垂足為D.
(1)求證:AC平分∠BAD;
(2)若AC=2 ,CD=2,求⊙O的直徑.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com