【題目】我們常用的數(shù)是十進制的數(shù),而計算機程序處理中使用的是只有數(shù)碼O和1的二進制數(shù).這兩者可以相互換算,如將二進制數(shù)1 1 0 1換算成十進制數(shù)應(yīng)為1×23+1×22+0×21+l×20=1 3,按此方式,則將十進制數(shù)2 5換算成二進制數(shù)應(yīng)為
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某玩具廠生產(chǎn)一種玩具,本著控制固定成本,降價促銷的原則,使生產(chǎn)的玩具能夠全部售出.據(jù)市場調(diào)查,若按每個玩具280元銷售時,每月可銷售300個.若銷售單價每降低1元,每月可多售出2個.據(jù)統(tǒng)計,每個玩具的固定成本Q(元)與月產(chǎn)銷量y(個)滿足如下關(guān)系:
月產(chǎn)銷量y(個) | … | 160 | 200 | 240 | 300 | … |
每個玩具的固定成本Q(元) | … | 60 | 48 | 40 | 32 | … |
(1)寫出月產(chǎn)銷量y(個)與銷售單價x (元)之間的函數(shù)關(guān)系式;
(2)求每個玩具的固定成本Q(元)與月產(chǎn)銷量y(個)之間的函數(shù)關(guān)系式;
(3)若每個玩具的固定成本為30元,則它占銷售單價的幾分之幾?
(4)若該廠這種玩具的月產(chǎn)銷量不超過400個,則每個玩具的固定成本至少為多少元?銷售單價最低為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是某公園里一處矩形風(fēng)景欣賞區(qū)ABCD,長AB=50米,寬BC=25米,為方便游人觀賞,公園特意修建了如圖所示的小路(圖中非陰影部分),小路的寬均為1米,那小明沿著小路的中間,從出口A到出口B所走的路線(圖中虛線)長為( )
A.100米 B.99米 C.98米 D.74米
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我縣開展“美麗新野,創(chuàng)衛(wèi)同行”活動,某校倡議學(xué)生利用雙休日參加義務(wù)勞動,為了解同學(xué)們勞動情況,學(xué)校隨機調(diào)查了100名同學(xué)的勞動時間,并用得到的數(shù)據(jù)繪制了一幅不完整的統(tǒng)計圖,根據(jù)圖中信息解答下列問題:
(1)將條形統(tǒng)計圖補充完整;
(2)求抽查的學(xué)生勞動時間的眾數(shù)、中位數(shù)、平均數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,過點C的直線MN∥AB,D為AB邊上一點,過點D作DE⊥BC,交直線MN于E,垂足為F,連接CD,BE.
(1)求證:CE=AD;
(2)當(dāng)D在AB中點時,判斷四邊形BECD的形狀,并說明理由;
(3)若D為AB中點,則當(dāng)∠A=時,四邊形BECD是正方形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知AB是⊙O的直徑,弦AD是∠BAC的平分線,過點D作⊙O的切線L,且AC⊥DE,垂足為點E.
(1)求證:AD2=AB·AE
(2)如果DE=,CE=1,請判別四邊形ACDO的形狀,并證明你的結(jié)論成立.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知線段AB=12cm,點C為AB上的一個動點,點D、E分別是AC和BC的中點.
(1)若AC=4cm,求DE的長;
(2)試?yán)?/span>“字母代替數(shù)”的方法,說明不論AC取何值(不超過12cm),DE的長不變;
(3)知識遷移:如圖②,已知∠AOB=α,過點O畫射線OC,使∠AOB:∠BOC=3:1若OD、OE分別平分∠AOC和∠BOC,試探究∠DOE與∠AOB的數(shù)量關(guān)系.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com