精英家教網 > 初中數學 > 題目詳情

【題目】已知,如圖,四邊形ABCD中,AB=3cm,AD=4cm,BC=13cm,CD=12cm,且∠A=90°,求四邊形ABCD的面積.

【答案】84

【解析】首先連接BD,再利用勾股定理計算出BD的長,再根據勾股定理逆定理計算出∠D=90°,然后計算出直角三角形ABD和直角三角形BDC的面積,即可算出答案.

解:連接BD,


∵∠A=90°,AB=3cm,AD=4cm,
∴BD===5(cm),
∵52+122=132,
∴BD2+CD2=CB2,
∴∠BDC=90°,
∴S△DBC=×DB×CD=×5×12=30(cm2),
S△ABD=×3×4=6(cm2),
∴四邊形ABCD的面積為30+6=36(cm2),
故答案為:36(cm2).

“點睛”此題主要考查了勾股定理,以及勾股定理的逆定理,解決此題的關鍵是算出BD的長,△BDC是直角三角形.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】下列各點中,點( 。┰y軸上.

A. A(3,0) B. B(﹣3,0) C. C(0,3) D. D(3,3)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】若關于x的不等式組 的整數解共有4個,則a的取值范圍是 ( )
A.6<a<7
B.6≤a<7
C.6≤a≤7
D.6<a≤7

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,隧道的截面由拋物線和長方形構成,長方形的長是12m,寬是4m.按照圖中所示的直角坐標系,拋物線可以用y=x2+bx+c表示,且拋物線的點C到墻面OB的水平距離為3m時,到地面OA的距離為m.

(1)求該拋物線的函數關系式,并計算出拱頂D到地面OA的距離;

(2)一輛貨運汽車載一長方體集裝箱后高為6m,寬為4m,如果隧道內設雙向行車道,那么這輛貨車能否安全通過?

(3)在拋物線型拱壁上需要安裝兩排燈,使它們離地面的高度相等,如果燈離地面的高度不超過8m,那么兩排燈的水平距離最小是多少米?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知x﹣2y+3=8,則整式x﹣2y的值為_____

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】因式分解

(1)5a2b+10ab2﹣15ab.

(2)(3m+n)2﹣(m﹣n)2

(3)m2﹣6m+9.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1,在△ABC中,∠ACB為銳角,點D為射線BC上一點,聯結AD,以AD為一邊且在AD的右側作正方形ADEF

1)如果AB=AC,∠BAC=90°,

當點D在線段BC上時(與點B不重合),如圖2,將△ABDA點逆時針旋轉90°,所得到的三角形為 ,線段CFBD所在直線的位置關系為 ,線段CF、BD的數量關系為 ;

當點D在線段BC的延長線上時,如圖3,中的結論是否仍然成立,并說明理由;

2)如果AB≠AC,∠BAC是銳角,點D在線段BC上,當∠ACB滿足什么條件時,CF⊥BC(點C、F不重合),并說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】解方程組
(1)2x﹣3
(2)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】把多項式2x2﹣4x+2分解因式的結果是

查看答案和解析>>

同步練習冊答案