【題目】如圖:AB=AC,AD=AE,AB⊥AC,AD⊥AE。
(1)求證:△EAC≌△DAB
(2)判斷線段EC與線段BD的關(guān)系,并說明理由
【答案】(1)證明見詳解;(2)BD⊥CE,理由見詳解.
【解析】
(1)根據(jù)垂直的定義可得∠BAC=∠DAE=90°,然后求出∠BAD=∠CAE,再利用“邊角邊”證明△ABD和△ACE全等;
(2)根據(jù)全等三角形對應角相等可得∠B=∠C,然后利用三角形的內(nèi)角和定理求出∠BFC=∠BAC=90°,再根據(jù)垂直的定義證明即可.
證明:如圖,
(1)∵AB⊥AC,AD⊥AE,
∴∠BAC=∠DAE=90°,
∴∠BAC+∠CAD=∠DAE+∠CAD,
即∠BAD=∠CAE,
在△ABD和△ACE中,,
∴△ABD≌△ACE(SAS);
(2)BD⊥CE
理由:∵△ABD≌△ACE,
∴∠B=∠C,
又∵∠B+∠BAC=∠C+∠BFC,
∴∠BFC=∠BAC=90°,
∴BD⊥CE.
科目:初中數(shù)學 來源: 題型:
【題目】我國道路交通安全法第四十七條規(guī)定“機動車行經(jīng)人行橫道時,應當減速行駛;遇行人通過人行橫道,應當停車讓行” 如圖:一輛汽車在一個十字路口遇到行人時剎車停下,汽車里的駕駛員看地面的斑馬線前后兩端的視角分別是和,如果斑馬線的寬度是米,駕駛員與車頭的距離是米,這時汽車車頭與斑馬線的距離x是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,D是BC的中點,連結(jié)AD,在AD的延長線上取一點E,連結(jié)BE,CE.
(1)求證:△ABE≌△ACE
(2)當AE與AD滿足什么數(shù)量關(guān)系時,四邊形ABEC是菱形?并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】直線MN與直線PQ垂直相交于點O,點A在射線OP上運動(點A不與點O重合),點B在射線OM上運動(點B不與點O重合).
(1)如圖1,已知AE、BE分別是∠BAO和∠ABO的角平分線,
①當∠ABO=60°時,求∠AEB的度數(shù);
②點A、B在運動的過程中,∠AEB的大小是否會發(fā)生變化?若發(fā)生變化,請說明變化的情況:若不發(fā)生變化,試求出∠AEB的大。
(2)如圖2,延長BA至G,已知∠BAO、∠OAG的角平分線與∠BOQ的角平分線所在的直線分別相交于E、F,在△AEF中,如果有一個角是另一個角的3倍,請直接寫出∠ABO的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點P是∠AOB內(nèi)任意一點,∠AOB=30°,OP=8,點M和點N分別是射線OA和射線OB上的動點,則△PMN周長的最小值為( 。
A. 5B. 6C. 8D. 10
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,AB=12,AC⊥AB,BD⊥AB,AC=BD=8。點P在線段AB上以每秒2個單位的速度由點A向點B運動,同時,點Q在線段BD上由B點向點D運動。它們的運動時間為t(s).
(1)若點Q的運動速度與點P的運動速度相等,當t=2時,△ACP與△BPQ是否全等,請說明理由,并判斷此時線段PC和線段PQ的位置關(guān)系;
(2)如圖2,將圖1中的“AC⊥AB,BD⊥AB”改為“∠CAB=∠DBA=60°”,其他條件不變。設點Q的運動速度為每秒x個單位,是否存在實數(shù)x,使得△ACP與△BPQ全等?若存在,求出相應的x,t的值;若不存在,請說明理由。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,直線l:y=x+m與x軸、y軸分別交于點A和點B(0,﹣1),拋物線y=x2+bx+c經(jīng)過點B,與直線l的另一個交點為C(4,n).
(1)求n的值和拋物線的解析式;
(2)點D在拋物線上,DE∥y軸交直線l于點E,點F在直線l上,且四邊形DFEG為矩形(如圖2),設點D的橫坐標為t(0<t<4),矩形DFEG的周長為p,求p與t的函數(shù)關(guān)系式以及p的最大值;
(3)將△AOB繞平面內(nèi)某點M旋轉(zhuǎn)90°或180°,得到△A1O1B1,點A、O、B的對應點分別是點A1、O1、B1.若△A1O1B1的兩個頂點恰好落在拋物線上,那么我們就稱這樣的點為“落點”,請直接寫出“落點”的個數(shù)和旋轉(zhuǎn)180°時點A1的橫坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,⊙O過A,C,D三點,過D作DB∥AC,且AC=AD,CD=CB.
(1)求證:BC為⊙O的切線;
(2)若cosB=,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在等腰ABC中,AB=AC,∠BAC=50°,∠BAC的平分線與AB的垂直平分線交于點O、點C沿EF折疊后與點O重合,則∠CEF的度數(shù)是( 。
A. 60° B. 55° C. 50° D. 45°
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com