【題目】如圖,點P是∠AOB內(nèi)任意一點,∠AOB=30°,OP=8,點M和點N分別是射線OA和射線OB上的動點,則△PMN周長的最小值為( 。
A. 5B. 6C. 8D. 10
【答案】C
【解析】
設(shè)點P關(guān)于OA的對稱點為C,關(guān)于OB的對稱點為D,當(dāng)點M、N在CD上時,△PMN的周長最。
解:分別作點P關(guān)于OA、OB的對稱點C、D,連接CD,分別交OA、OB于點M、N,連接OP、OC、OD、PM、PN.
∵點P關(guān)于OA的對稱點為C,關(guān)于OB的對稱點為D,
∴PM=CM,OP=OC,∠COA=∠POA;
∵點P關(guān)于OB的對稱點為D,
∴PN=DN,OP=OD,∠DOB=∠POB,
∴OC=OD=OP=8cm,∠COD=∠COA+∠POA+∠POB+∠DOB=2∠POA+2∠POB=2∠AOB=60°,
∴△COD是等邊三角形,
∴CD=OC=OD=8.
∴△PMN的周長的最小值=PM+MN+PN=CM+MN+DN≥CD=8,
故選:C.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖①,△ABC是等邊三角形,點D、E分別在邊AB、BC上,且BD=BE,連接DE.
(1)求證:DE∥AC;
(2)將圖①中的△BDE繞點B順時針旋轉(zhuǎn),使得點A、D、E在同一條直線上,如圖②,求∠AEC的度數(shù);
(3)在(2)的條件下,如圖③,連接CD,過點D作DM⊥BE于點M,在線段BM上取點N,使得∠DNE+∠DCE=180°.請?zhí)剿魅龡l線段EN,MN,EC之間的關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,A點的坐標(biāo)為(m,3),AB⊥x軸于點B,tan∠OAB=,反比例函數(shù)y1=的圖象的一支經(jīng)過AO的中點C,且與AB交于點D.
(1)求反比例函數(shù)解析式;
(2)設(shè)直線OA的解析式為y2=nx,請直接寫出y1<y2時,自變量x的取值范圍 .
(3)如圖2,若函數(shù)y=3x與y1=的圖象的另一支交于點M,求△OMB與四邊形OCDB的面積的比值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以正方形ABCD的邊AB為直徑作⊙O,E是⊙O上的一點,EF⊥AB于F,AF>BF,作直線DE交BC于點G.若正方形的邊長為10,EF=4.
(1)分別求AF、BF的長.
(2)求證:DG是⊙O的切線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB∥CD,∠ABK的角平分線BE的反向延長線和∠DCK的角平分線CF的反向延長線交于點H,∠K﹣∠H=27°,則∠K=( 。
A. 76° B. 78° C. 80° D. 82°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:AB=AC,AD=AE,AB⊥AC,AD⊥AE。
(1)求證:△EAC≌△DAB
(2)判斷線段EC與線段BD的關(guān)系,并說明理由
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在第1個△ABA1中,∠B=40°,∠BAA1=∠BA1A,在A1B上取一點C,延長AA1到A2,使得在第2個△A1CA2中,∠A1CA2=∠A1 A2C;在A2C上取一點D,延長A1A2到A3,使得在第3個△A2DA3中,∠A2DA3=∠A2 A3D;…,按此做法進行下去,第3個三角形中以A3為頂點的內(nèi)角的度數(shù)為 ;第n個三角形中以An為頂點的內(nèi)角的度數(shù)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于x的一元二次方程x2+3x+m-1=0的兩個實數(shù)根分別為x1,x2.
(1)求m的取值范圍.
(2)若2(x1+x2)+ x1x2+10=0.求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB=12cm,CA⊥AB于點A,DB⊥AB于點B,且AC=4cm,點P從點B向點A運動,每秒鐘走1cm,點Q從點B向點D運動,每秒鐘走2cm,兩點同時出發(fā),運動幾秒鐘后,△CPA與△PQB全等?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com