【題目】如圖,已知ABCD,∠A=40°,點(diǎn)P是射線B上一動(dòng)點(diǎn)(與點(diǎn)A不重合),CMCN分別平分∠ACP和∠PCD,分別交射線AB于點(diǎn)M,N

1)求∠MCN的度數(shù).

2)當(dāng)點(diǎn)P運(yùn)動(dòng)到某處時(shí),∠AMC=ACN,求此時(shí)∠ACM的度數(shù).

3)在點(diǎn)P運(yùn)動(dòng)的過程中,∠APC與∠ANC的比值是否隨之變化?若不變,請(qǐng)求出這個(gè)比值:若變化,請(qǐng)找出變化規(guī)律.

【答案】(1)∠MCN=70°;(2)∠ACM=35°;(3)不變.(詳見解析)

【解析】

1)由ABCD可得∠ACD=180°-A,再由CM、CN均為角平分線可求解;

2)由ABCD可得∠AMC=MCD,再由∠AMC=ACN可得∠ACM =NCD

3)由ABCD可得∠APC=PCD,再由CN為角平分線即可解答.

解:(1)∵A BCD,

∴∠ACD=180°﹣∠A=140°,

又∵CMCN分別平分∠ACP和∠PCD,

∴∠MCN=MCP+NCP=(∠ACP+PCD=ACD=70°,

故答案為:70°

2)∵ABCD,

∴∠AMC=MCD,

又∵∠AMC=ACN,

∴∠MCD=ACN,

∴∠ACM=ACN﹣∠MCN=MCD﹣∠MCN=NCD

∴∠ACM=MCP=NCP=NCD,

∴∠ACM=ACD=35°

故答案為:35°

3)不變.理由如下:

ABCD,

∴∠APC=PCD,∠ANC=NCD,

又∵CN平分∠PCD

∴∠ANC=NCD=PCD=APC,即∠APC:∠ANC=21

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AD是高,AEBF是角平分線,它們相交于點(diǎn)O,∠BAC=50°,∠C=70°,求∠DAC和∠BOA的度數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)計(jì)算并觀察下列各式:

(x1)(x1)

(x1)( x1) ;

(x1)( x1) ;

2)從上面的算式及計(jì)算結(jié)果,你發(fā)現(xiàn)了什么?請(qǐng)根據(jù)你發(fā)現(xiàn)的規(guī)律直接寫下面的空格.(x1) 1;

3)利用你發(fā)現(xiàn)的規(guī)律計(jì)算:

4)利用該規(guī)律計(jì)算:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)如圖1,已知:在△ABC中,AB=AC=10,BD平分∠ABC,CD平分∠ACB,過點(diǎn)DEF∥BC,分別交AB、ACE、F兩點(diǎn),則圖中共有__________個(gè)等腰三角形;EFBE、CF之間的數(shù)量關(guān)系是__________,△AEF的周長(zhǎng)是__________;

(2)如圖2,若將(1)中“△ABC中,AB=AC=10”該為△ABC為不等邊三角形,AB=8,AC=10”其余條件不變,則圖中共有__________個(gè)等腰三角形;EFBE、CF之間的數(shù)量關(guān)系是什么?證明你的結(jié)論,并求出△AEF的周長(zhǎng);

(3)已知:如圖3,D△ABC外,AB>AC,且BD平分∠ABC,CD平分△ABC的外角∠ACG,過點(diǎn)DDE∥BC,分別交AB、ACE、F兩點(diǎn),則EFBE、CF之間又有何數(shù)量關(guān)系呢?直接寫出結(jié)論不證明

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知∠1+∠4180°,2﹦∠E,則EFBC,下面是王華同學(xué)的推導(dǎo)過程﹐請(qǐng)你幫他在括號(hào)內(nèi)填上推導(dǎo)依據(jù)或內(nèi)容.

證明:

∵∠1+∠4180° ),

3﹦∠4 ),

∴∠1 180°

AECG

∴∠E﹦∠CGF ).

∵∠2﹦∠E(已知)

2﹦∠CGF ).

BCEF ).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】地某廠和地某廠同時(shí)制成機(jī)器若干臺(tái),地某廠可支援外地臺(tái),地某廠可支援外地臺(tái),現(xiàn)決定給臺(tái),臺(tái),已知從運(yùn)往、兩地的運(yùn)費(fèi)分別是元每臺(tái)、元每臺(tái),從運(yùn)往、兩地的運(yùn)費(fèi)分別是元每臺(tái)、元每臺(tái).

1)設(shè)地某廠運(yùn)往臺(tái),求總運(yùn)費(fèi)為多少元?

2)在(1)中,當(dāng)時(shí),總運(yùn)費(fèi)是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中,,,點(diǎn)是射線上的一個(gè)動(dòng)點(diǎn),作,且,連接交射線于點(diǎn),若,則_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,我們定義點(diǎn)P(a ,b )的“伴隨點(diǎn)Q且規(guī)定:當(dāng)ab時(shí),Q( b,-a );當(dāng) ab 時(shí),Q( a,-b).

(1)點(diǎn)(2,1)的伴隨點(diǎn)坐標(biāo)為__________;

(2)若點(diǎn)A(a ,2)的伴隨點(diǎn)在函數(shù)y=的圖像上,求a的值;

(3)已知直線l與坐標(biāo)軸交于(6,0),(0,3)兩點(diǎn).將直線l上所有點(diǎn)的伴隨點(diǎn)組成一個(gè)新的圖形記作M.請(qǐng)直接寫出直線y=—x+c與圖形M有交點(diǎn)時(shí)相應(yīng)的c的取值范圍為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲乙兩個(gè)工程隊(duì)承包了地鐵某標(biāo)段全長(zhǎng)3900米的施工任務(wù),分別從南,北兩個(gè)方向同時(shí)向前掘進(jìn)。已知甲工程隊(duì)比乙工程隊(duì)平均每天多掘進(jìn)0.4米經(jīng)過13天的施工兩個(gè)工程隊(duì)共掘進(jìn)了156.

(1)求甲,乙兩個(gè)工程隊(duì)平均每天各掘進(jìn)多少米?

(2)為加快工程進(jìn)度兩工程隊(duì)都改進(jìn)了施工技術(shù),在剩余的工程中,甲工程隊(duì)平均每天能比原來多掘進(jìn)0.4米,乙工程隊(duì)平均每天能比原來多掘進(jìn)0.6米,按此施工進(jìn)度能夠比原來少用多少天完成任務(wù)呢?

查看答案和解析>>

同步練習(xí)冊(cè)答案