【題目】如圖,在△ABC中,ABAC,以AC為直徑做⊙OBC于點(diǎn)D,過點(diǎn)D作⊙O的切線,交AB于點(diǎn)E,交CA的延長線于點(diǎn)F

1)求證:FEAB;

2)填空:當(dāng)EF4時(shí),則DE的長為   

【答案】(1)詳見解析;(2)6.

【解析】

(1)連接OD,如圖,先根據(jù)切線的性質(zhì)得到ODDF,然后利用等腰三角形的性質(zhì)和平行線的判定證明ODAB,從而可判斷EFAB;

(2)根據(jù)平行線分線段比例,由AEOD,然后根據(jù)比例性質(zhì)可求出DE

(1)連接OD,如圖,

DF⊙O的切線,

ODDF,

OCOD,

∴∠C=∠ODC,

ABAC,

∴∠B=∠C,

∴∠B=∠ODC,

ODAB

EFAB;

(2)AEOD,

,解得DE6

故答案為:6

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,男生樓在女生樓的左側(cè),兩樓高度均為90m,樓間距為AB,冬至日正午,太陽光線與水平面所成的角為,女生樓在男生樓墻面上的影高為CA;春分日正午,太陽光線與水平面所成的角為,女生樓在男生樓墻面上的影高為DA,已知

求樓間距AB

若男生樓共30層,層高均為3m,請通過計(jì)算說明多少層以下會受到擋光的影響?參考數(shù)據(jù):,,,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,有下列5個(gè)結(jié)論:①abc0;②4a+2b+c0;③b2-4ac0;④ba+c;⑤a+2b+c0,其中正確的結(jié)論有( 。

A. 2B. 3C. 4D. 5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將繞點(diǎn)順時(shí)針旋轉(zhuǎn)得到,使點(diǎn)的對應(yīng)點(diǎn)恰好落在邊上,點(diǎn)的對應(yīng)點(diǎn)為,連接.下列結(jié)論一定正確的是( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)yax2+bx+c的部分圖象如圖,則下列說法錯(cuò)誤的是(  )

A. 對稱軸是直線x=﹣1

B. abc0

C. b24ac0

D. 方程ax2+bx+c0的根是x1=﹣3x21

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AB=4BC=6,EBC邊的中點(diǎn),點(diǎn)P在線段AD上,過PPFAEF,設(shè)PA=x

1)求證:PFA∽△ABE;

2)當(dāng)點(diǎn)P在線段AD上運(yùn)動時(shí),設(shè)PA=x,是否存在實(shí)數(shù)x,使得以點(diǎn)P,F,E為頂點(diǎn)的三角形也與ABE相似?若存在,請求出x的值;若不存在,請說明理由;

3)探究:當(dāng)以D為圓心,DP為半徑的⊙D線段AE只有一個(gè)公共點(diǎn)時(shí),請直接寫出x滿足的條件:   

備用圖

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,EAD上一點(diǎn),PQ垂直平分BE,分別交AD、BE、BC于點(diǎn)P、O、Q,連接BPEQ

1)求證:△BOQ≌△EOP;

2)求證:四邊形BPEQ是菱形;

3)若AB6,FAB的中點(diǎn),OF+OB9,求PQ的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC中,∠ABC45°,AB7,BC17,以AC為斜邊在△ABC外作等腰RtACD,連接BD,則BD的長為___

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD的頂點(diǎn)在O上,BDO的直徑,延長CD、BA交于點(diǎn)E,連接AC、BD交于點(diǎn)F,作AHCE,垂足為點(diǎn)H,已知∠ADE=∠ACB

1)求證:AHO的切線;

2)若OB4,AC6,求sinACB的值;

3)若,求證:CDDH

查看答案和解析>>

同步練習(xí)冊答案