【題目】二次函數(shù)y=ax2+bx+c的部分圖象如圖,則下列說法錯誤的是( 。
A. 對稱軸是直線x=﹣1
B. abc<0
C. b2﹣4ac>0
D. 方程ax2+bx+c=0的根是x1=﹣3和x2=1
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,第一象限內(nèi)的點P在直線y=x上,過點P的直線交x軸正半軸于點A,交直線y=3x于點B,點B在第一象限內(nèi).
(1)如圖1,當(dāng)∠OAB=90°時,求的值;
(2)當(dāng)點A的坐標(biāo)為(6,0),且BP=2AP時,將過點A的拋物線y=﹣x2+mx上下方平移,使它過點B,求平移的方向和距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)學(xué)實踐課小明利用樹影測量樹高,如圖(1),已測出樹AB的影長AC為18米,并測出此時太陽光線與地面成30°夾角.(結(jié)果保留根號)
(1)求出樹高AB;
(2)因水土流失,此時樹AB沿太陽光線方向倒下,在傾倒過程中,樹影長度發(fā)生了變化,假設(shè)太陽光線與地面夾角保持不變(用圖(2)解答)
①求樹與地面成45°角時的影長;
②求樹的最大影長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校260名學(xué)生參加植樹活動,活動結(jié)束后學(xué)校隨機(jī)調(diào)查了部分學(xué)生每人的植樹棵數(shù),并繪制成如下的統(tǒng)計圖①和統(tǒng)計圖②.請根據(jù)相關(guān)信息,解答下列問題:
(Ⅰ)本次接受調(diào)查的學(xué)生人數(shù)為______,圖①中m的值為_______;
(Ⅱ)求本次調(diào)查獲取的樣本數(shù)據(jù)的眾數(shù)和中位數(shù);
(Ⅲ)求本次調(diào)查獲取的樣本數(shù)據(jù)的平均數(shù),并根據(jù)樣本數(shù)據(jù),估計這260名學(xué)生共植樹多少棵.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了解初中學(xué)生每天在校體育活動的時間(單位:h),隨機(jī)調(diào)査了該校的部分初中學(xué)生.根據(jù)調(diào)查結(jié)果,繪制出如下的統(tǒng)計圖①和圖②.請根據(jù)相關(guān)信息,解答下列問題:
(Ⅰ)本次接受調(diào)查的初中學(xué)生人數(shù)為___________,圖①中m的值為_____________;
(Ⅱ)求統(tǒng)計的這組每天在校體育活動時間數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù);
(Ⅲ)根據(jù)統(tǒng)計的這組每天在校體育活動時間的樣本數(shù)據(jù),若該校共有800名初中學(xué)生,估計該校每天在校體育活動時間大于1h的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AC為直徑做⊙O交BC于點D,過點D作⊙O的切線,交AB于點E,交CA的延長線于點F.
(1)求證:FE⊥AB;
(2)填空:當(dāng)EF=4,時,則DE的長為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】列方程解應(yīng)用題:
某商場用8萬元購進(jìn)一批新款襯衫,上架后很快銷售一空,商場又緊急購進(jìn)第二批這種襯衫,數(shù)量是第一次的2倍,但進(jìn)價漲了4元/件,結(jié)果共用去17.6萬元.
(1)該商場第一批購進(jìn)襯衫多少件?
(2)商場銷售這種襯衫時,每件定價都是58元,剩至150件時按八折出售,全部售完.售完這兩批襯衫,商場共盈利多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 甲、乙兩名同學(xué)參加少年科技創(chuàng)新選拔賽,六次比賽的成績?nèi)缦拢?/span>
甲:87 93 88 93 89 90
乙:85 90 90 96 89 a
(1)甲同學(xué)成績的中位數(shù)是 ;
(2)若甲、乙的平均成績相同,則a= ;
(3)已知乙的方差是,如果要選派一名發(fā)揮穩(wěn)定的同學(xué)參加比賽,應(yīng)該選誰?說明理由.(方差公式:S2=
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】四位同學(xué)在研究函數(shù)y=ax2+bx+c(a、b、c為常數(shù),且a≠0)時,甲發(fā)現(xiàn)當(dāng)x=1時,函數(shù)有最大值;乙發(fā)現(xiàn)﹣1是方程ax2+bx+c=0的一個根;丙發(fā)現(xiàn)函數(shù)的最大值為﹣1;丁發(fā)現(xiàn)當(dāng)x=2時,y=﹣2,已知四位中只有一位發(fā)現(xiàn)的結(jié)論時錯誤的,則該同學(xué)是( ).
A. 甲B. 乙C. 丙D. 丁
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com