【題目】如圖,四邊形ABCD是平行四邊形,AE平分∠BAD , 交DC的延長線于點E.求證:BC=DE
【答案】證明:∵四邊形ABCD是平行四邊形,
∴AB∥DC,AD=BC,
∴∠BAE=∠E ,
∵AE平分∠BAD,
∴∠BAE=∠DAE,
∴∠E=∠DAE ,
∴DA=DE,
又∵AD=BC,
∴BC=DE
【解析】由平行四邊形的性質(zhì)得出AB∥CD,得出內(nèi)錯角相等∠E=∠BAE,再由角平分線證出∠E=∠DAE,得出DA=DE,再根據(jù)平行四邊形的性質(zhì)即可得出結(jié)論.
【考點精析】根據(jù)題目的已知條件,利用角平分線的性質(zhì)定理和平行四邊形的性質(zhì)的相關知識可以得到問題的答案,需要掌握定理1:在角的平分線上的點到這個角的兩邊的距離相等; 定理2:一個角的兩邊的距離相等的點,在這個角的平分線上;平行四邊形的對邊相等且平行;平行四邊形的對角相等,鄰角互補;平行四邊形的對角線互相平分.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在9×7的小正方形網(wǎng)格中,△ABC的頂點A,B,C在網(wǎng)格的格點上.將△ABC向左平移3個單位、再向上平移3個單位得到△A′B′C′.再將△ABC按一定規(guī)律依次旋轉(zhuǎn):第1次,將△ABC繞點B順時針旋轉(zhuǎn)得到△;第2次,將△繞點順時針旋轉(zhuǎn)得到△;第3次,將△繞點順時針旋轉(zhuǎn)得到△;第4次,將△繞點順時針旋轉(zhuǎn)得到△依次旋轉(zhuǎn)下去.
(1)在網(wǎng)格中畫出△A′B′C′和△;
(2)請直接寫出至少在第幾次旋轉(zhuǎn)后所得的三角形剛好為△A′B′C′.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】用正方形硬紙板做三棱柱盒子,每個盒子由3個長方形側(cè)面和2個正三角形底面組成,硬紙板以如圖兩種方法裁剪(裁剪后邊角料不再利用).
A方法:剪6個側(cè)面;
B方法:剪4個側(cè)面和5個底面.
現(xiàn)有19張硬紙板,裁剪時 張用A方法,其余用B方法.
(1)分別求裁剪出的側(cè)面和底面的個數(shù)(用含 的式子表示);
(2)若裁剪出的側(cè)面和底面恰好全部用完,問能做多少個盒子?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】七年級一班開展了一次“紀念抗日戰(zhàn)爭勝利七十周年”知識競賽,競賽題一共有20道題,下表是其中四位參賽選手的答對題數(shù)和不答或答錯題數(shù)及得分情況,請你根據(jù)表格中所給的信息回答下列問題:
(1)問答對一題得多少分,不答或答錯一題扣多少分?
(2)一位同學說他得了75分,請問可能嗎?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點A為函數(shù) 圖象上一點,連結(jié)OA,交函數(shù)的圖象于點B,點C是x軸上一點,且AO=AC,求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖(1)是一個長為 ,寬為 ( > )的長方形,用剪刀沿圖中虛線(對稱軸)剪開,把它分成四塊形狀和大小都一樣的小長方形,然后按圖(2)那樣拼成一個正方形,則中間空的部分的面積是.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在同一平面內(nèi)有2014條直線a1,a2,…,a2014,如果a1⊥a2,a2∥a3,a3⊥a4,a4∥a5,…,依此類推,那么a1與a2014的位置關系是( )
A. 垂直
B. 平行
C. 垂直或平行
D. 重合
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,拋物線y=ax2﹣5ax+4a與x軸交于A、B(A點在B點的左側(cè))與y軸交于點C.
(1)如圖1,連接AC、BC,若△ABC的面積為3時,求拋物線的解析式;
(2)如圖2,點P為第四象限拋物線上一點,連接PC,若∠BCP=2∠ABC時,求點P的橫坐標;
(3)如圖3,在(2)的條件下,點F在AP上,過點P作PH⊥x軸于H點,點K在PH的延長線上,AK=KF,∠KAH=∠FKH,PF=﹣4a,連接KB并延長交拋物線于點Q,求PQ的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com