【題目】如圖,將四邊形ABCD放在每個(gè)小正方形的邊長為1的網(wǎng)格中,點(diǎn)A.B、C、D均落在格點(diǎn)上.

(Ⅰ)計(jì)算AD2+DC2+CB2的值等于_____;

(Ⅱ)請?jiān)谌鐖D所示的網(wǎng)格中,用無刻度的直尺,畫出一個(gè)以AB為一邊的矩形,使該矩形的面積等于AD2+DC2+CB2,并簡要說明畫圖方法(不要求證明).

【答案】22

【解析】

(1)直接根據(jù)勾股定理分別計(jì)算的值,再相加即可;
(2)以AB為邊做正方形,這個(gè)正方形的面積是26,再作同底邊平行四邊形,使它的面積為4,直線MNAH于點(diǎn)Q,交GB于點(diǎn)P,得矩形ABPQ;

解:(1)

故答案為22;

(2)如圖,以AB為邊做正方形ABGH,再作平行四邊形HMNG,直線MNAH于點(diǎn)Q,交GB于點(diǎn)P,矩形ABPQ即為所求.

理由是:∵

S矩形HQNG=SHMNG=4,

S正方形ABGH=

S矩形ABPQ=264=22,

所以畫出的矩形ABPQ的面積等于

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ACB90°,點(diǎn)DAB邊上一點(diǎn),以BD為直徑的⊙O與邊AC相切于點(diǎn)E,連接DE并延長DEBC的延長線于點(diǎn)F

1)求證:BDBF;

2)填空:

①若⊙O的半徑為5tanB,則CF   ;

②若⊙OBF相交于點(diǎn)H,當(dāng)∠B的度數(shù)為   時(shí),四邊形OBHE為菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ABC=90°,AB=4BC=3,以點(diǎn)B為圓心,適當(dāng)長為半徑畫弧交邊于D,E兩點(diǎn)(按照A,DE,C依次排列,且D、E不重合).D、E分別作ABBC的垂線段交于F、G兩點(diǎn),如果線段DF=x,EG=y,則x、y的關(guān)系式為(

A.20x-15y=B.20x-15y=

C.15x-20y=D.15x-20y=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y=的圖像與軸的一個(gè)交點(diǎn)為A-1,0),另一個(gè)交點(diǎn)為B,與軸交于點(diǎn)C0,﹣3),頂點(diǎn)為D

1)求二次函數(shù)的解析式和點(diǎn)D的坐標(biāo);

2)若點(diǎn)M是拋物線在軸下方圖像上的一動點(diǎn),過點(diǎn)MMN軸交線段BC于點(diǎn)N,當(dāng)MN取最大值時(shí),點(diǎn)M 的坐標(biāo);

3)將該拋物線向上或向下平移,使得新拋物線的頂點(diǎn)D落在x軸上,原拋物線上一點(diǎn)P平移后的對應(yīng)點(diǎn)為Q,如果∠OQP=OPQ,試求點(diǎn)Q的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:點(diǎn)M是平行四邊形ABCD對角線AC所在直線上的一個(gè)動點(diǎn)(點(diǎn)M不與點(diǎn)A、C重合),分別過點(diǎn)A、C向直線BM作垂線,垂足分別為點(diǎn)E、F,點(diǎn)OAC的中點(diǎn).

⑴如圖1,當(dāng)點(diǎn)M與點(diǎn)O重合時(shí),OEOF的數(shù)量關(guān)系是

⑵直線BM繞點(diǎn)B逆時(shí)針方向旋轉(zhuǎn),且∠OFE=30°

①如圖2,當(dāng)點(diǎn)M在線段AC上時(shí),猜想線段CFAE、OE之間有怎樣的數(shù)量關(guān)系?請你寫出來并加以證明;

②如圖3,當(dāng)點(diǎn)M在線段AC的延長線上時(shí),請直接寫出線段CF、AEOE之間的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線經(jīng)過,三點(diǎn).

1)求拋物線的解析式;

2)在拋物線的對稱軸上有一點(diǎn),使的值最小,求點(diǎn)的坐標(biāo);

3)點(diǎn)軸上一動點(diǎn),在拋物線上是否存在一點(diǎn),使以,,四點(diǎn)構(gòu)成的四邊形為平行四邊形?若存在,求點(diǎn)的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,,將繞點(diǎn)順時(shí)針旋轉(zhuǎn),使點(diǎn)落在點(diǎn)處,得到,過點(diǎn)作平行于軸的直線交于點(diǎn),交軸于點(diǎn),直線于點(diǎn).,.

1)求經(jīng)過點(diǎn)、的反比例函數(shù)和直線的解析式;

2)過點(diǎn)軸,求五邊形的面積;

3)直接寫出當(dāng)時(shí)的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形和正方形中,點(diǎn)上,,的中點(diǎn),交于點(diǎn)0.則的長為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知中,,,,點(diǎn),分別是邊,上的動點(diǎn),且,點(diǎn)關(guān)于的對稱點(diǎn)恰好落在的內(nèi)角平分線上,則長為_______________

查看答案和解析>>

同步練習(xí)冊答案