【題目】如圖,在平面直角坐標(biāo)系中,、、.

1)請畫出關(guān)于軸對稱的(其中、、分別是、的對應(yīng)點)并直接寫出點的坐標(biāo)為 .

2)若直線經(jīng)過點且與軸平行,則點關(guān)于直線的對稱點的坐標(biāo)為 .

3)在軸上存在一點,使最大,則點的坐標(biāo)為 .

4)第一象限有一點,在軸上找一點使最短,畫出最短路徑,保留作圖跡.

【答案】1)圖詳見解析,點的坐標(biāo);(2)點關(guān)于直線的對稱點;(3;(4)圖詳見解析.

【解析】

1)根據(jù)軸對稱定義,先描點,再連線,根據(jù)圖形寫出點坐標(biāo);(2)根據(jù)圖形和軸對稱定義可得;(3)延長軸于點,此時的值最大;(4)作點關(guān)于軸的對稱點,連接軸于點,連接可得;

解:(1)如圖,即為所求.

的坐標(biāo)

2)根據(jù)圖形可得,點關(guān)于直線的對稱點

3)延長軸于點,此時的值最大,

4)作點關(guān)于軸的對稱點,連接軸于點,連接,此時的值最小.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,點內(nèi),,,點外,

1)求的度數(shù).

2)判斷的形狀并加以證明.

3)連接,若,求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,拋物線經(jīng)過點(2,3),對稱軸為直線x =1.

1)求拋物線的表達式;

2如果垂直于y軸的直線l與拋物線交于兩點A, ),B, ),其中, ,與y軸交于點C,求BCAC的值;

3)將拋物線向上或向下平移,使新拋物線的頂點落在x軸上,原拋物線上一點P平移后對應(yīng)點為點Q如果OP=OQ,直接寫出點Q的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,RtOAB的頂點Ax軸的正半軸上.頂點B的坐標(biāo)為(3,),點C的坐標(biāo)為(1,0),且∠AOB=30°P為斜邊OB上的一個動點,則PA+PC的最小值為(   )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,AB=AC,∠BAC=120°,AC的垂直平分線交BC于點D,垂足為E,若DE=2cm,則BD的長為_______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點E是正方形ABCD外一點,連接AE、BEDE,過點AAE的垂線交DE于點P.若AEAP1,PB3.下列結(jié)論:APD≌△AEB②EBED;B到直線AE的距離為④S正方形ABCD8+.則正確結(jié)論的個數(shù)是( 。

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD中點EAD的中點,連接CE,將△CDE繞點C逆時針旋轉(zhuǎn)得△CGF,點GCE上,作DMCE于點M,連接BMCFN,已知四邊形GFNM面積為27,則正方形ABCD的邊長為_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,AB=6,AD=9,BAD的平分線交BCE,交DC的延長線于F,BGAEG,BG=,則EFC的周長為_____________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(2017浙江省嘉興市,第20題,8分)如圖,一次函數(shù))與反比例函數(shù)的圖象交于點A(﹣1,2),Bm,﹣1).

(1)求這兩個函數(shù)的表達式;

(2)在x軸上是否存在點Pn,0)(n>0),使ABP為等腰三角形?若存在,求n的值;若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案