【題目】如圖,△ABC中,D、E分別是AC、AB上的點(diǎn),BD與CE交于點(diǎn)O.給出下列三個(gè)條件:
①∠EBO=∠DCO;②∠BEO=∠CDO;③BE=CD.
(1)上述三個(gè)條件中,哪兩個(gè)條件 可判定△ABC是等腰三角形(用序號(hào)寫出所有情形);
(2)選擇第(1)小題中的一種情形,證明△ABC是等腰三角形.
【答案】(1) ①③或②③;(2)證明見解析.
【解析】試題分析:(1)①③;②③;①④;②④都可以組合證明△ABC是等腰三角形;(2)選①③為條件證明△ABC是等腰三角形,首先證明△EBO≌△DCO,可得BO=CO,根據(jù)等邊對(duì)等角可得∠OBC=∠OCB,進(jìn)而得到∠ABC=∠ACB,根據(jù)等角對(duì)等邊可得AB=AC,即可得到△ABC是等腰三角形
試題解析:(1)①③;②③;①④;②④都可以組合證明△ABC是等腰三角形;(2)選①③為條件證明△ABC是等腰三角形;證明:∵在△EBO和△DCO中,∵∠EOB=∠DOC,∠EBO=∠DCO,EB=CD,∴△EBO≌△DCO(AAS),∴BO=CO,∴∠OBC=∠OCB,∴∠EBO+∠OBC=∠DCO+∠OCB,即∠ABC=∠ACB,∴AB=AC,∴△ABC是等腰三角形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在矩形ABCD中,AD=3,CD=4,點(diǎn)E在CD上,且DE=1.
(1)感知:如圖①,連接AE,過(guò)點(diǎn)E作EF丄AE,交BC于點(diǎn)F,連接AE,易證:△ADE≌△ECF(不需要證明);
(2)探究:如圖②,點(diǎn)P在矩形ABCD的邊AD上(點(diǎn)P不與點(diǎn)A、D重合),連接PE,過(guò)點(diǎn)E作EF⊥PE,交BC于點(diǎn)F,連接PF.求證:△PDE和△ECF相似;
(3)應(yīng)用:如圖③,若EF交AB于點(diǎn)F,EF丄PE,其他條件不變,且△PEF的面積是6,則AP的長(zhǎng)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,以點(diǎn)C(1,1)為圓心,2為半徑作圓,交x軸于A,B兩點(diǎn),點(diǎn)P在優(yōu)弧上.
(1)求出A,B兩點(diǎn)的坐標(biāo);
(2)試確定經(jīng)過(guò)A、B且以點(diǎn)P為頂點(diǎn)的拋物線解析式;
(3)在該拋物線上是否存在一點(diǎn)D,使線段OP與CD互相平分?若存在,求出點(diǎn)D的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,Rt△ABC的三個(gè)頂點(diǎn)分別是A(-3,2),B(0,4),C(0,2).
(1)將△ABC以點(diǎn)C為旋轉(zhuǎn)中心旋轉(zhuǎn)180°,畫出旋轉(zhuǎn)后對(duì)應(yīng)的△A1B1C;平移△ABC,若點(diǎn)A的對(duì)應(yīng)點(diǎn)A2的坐標(biāo)為(0,-4),畫出平移后對(duì)應(yīng)的△A2B2C2;
(2)若將△A1B1C繞某一點(diǎn)旋轉(zhuǎn)可以得到△A2B2C2,請(qǐng)直接寫出旋轉(zhuǎn)中心的坐標(biāo);
(3)在x軸上有一點(diǎn)P,使得PA+PB的值最小,請(qǐng)直接寫出點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】把下列各數(shù)填入相應(yīng)的集合內(nèi):+8.5,-3,0.3,0,-3.4,12,-9,4,-1.2,-2.
(1)正數(shù)集合:{___________…};
(2)整數(shù)集合:{___________…};
(3)非正整數(shù)集合:{_____________…};
(4)負(fù)分?jǐn)?shù)集合:{ ________________…}.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,過(guò)點(diǎn)A作⊙O的切線,交OC的延長(zhǎng)線于點(diǎn)D,∠D=30°
(1)求∠B的度數(shù);
(2)若OD⊥AB,BC=5,求AD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系第一象限中,已知點(diǎn)A坐標(biāo)為(1,0),點(diǎn)D坐標(biāo)為(1,3),點(diǎn)G坐標(biāo)為(1,1),動(dòng)點(diǎn)E從點(diǎn)G出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度勻速向點(diǎn)D方向運(yùn)動(dòng),與此同時(shí),x軸上動(dòng)點(diǎn)B從點(diǎn)A出發(fā),以相同的速度向右運(yùn)動(dòng),兩動(dòng)點(diǎn)運(yùn)動(dòng)時(shí)間為t(0<t<2),以AD、AB分別為邊作矩形ABCD,過(guò)點(diǎn)E作雙曲線交線段BC于點(diǎn)F,作CD中點(diǎn)M,連接BE、EF、EM、FM.
(1)當(dāng)t=1時(shí),求點(diǎn)F的坐標(biāo).
(2)若BE平分∠AEF,則t的值為多少?
(3)若∠EMF為直角,則t的值為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市對(duì)當(dāng)年初中升高中數(shù)學(xué)考試成績(jī)進(jìn)行抽樣分析,試題滿分100分,將所得成績(jī)(均為整數(shù))整理后,繪制了如圖所示的統(tǒng)計(jì)圖,根據(jù)圖中所提供的信息,回答下列問題:
(1)共抽取了多少名學(xué)生的數(shù)學(xué)成績(jī)進(jìn)行分析?
(2)如果80分以上(包括80分)為優(yōu)生,估計(jì)該年的優(yōu)生率為多少?
(3)該年全市共有22000人參加初中升高中數(shù)學(xué)考試,請(qǐng)你估計(jì)及格(60分及60分以上)人數(shù)大約為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將一副三角板中的兩個(gè)直角頂點(diǎn)疊放在一起(如圖①),其中,,.
(1)若,求的度數(shù);
(2)試猜想與的數(shù)量關(guān)系,請(qǐng)說(shuō)明理由;
(3)若按住三角板不動(dòng),繞頂點(diǎn)轉(zhuǎn)動(dòng)三角板,試探究等于多少度時(shí),,并簡(jiǎn)要說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com