【題目】如圖1,將一塊等腰直角三角板ABC的直角頂點(diǎn)C置于直線l上,圖2是由圖1抽象出的幾何圖形,過(guò)A、B兩點(diǎn)分別作直線l的垂線,垂足分別為D、E.
(1)△ACD與△CBE全等嗎?說(shuō)明你的理由.
(2)若AD=2,DE=3.5,求BE的長(zhǎng).
【答案】(1)全等,理由見(jiàn)解析;(2)5.5
【解析】
(1)觀察圖形和已知條件,根據(jù)AAS即可證明△ACD≌△CBE.;
(2)由(1)知△ACD≌△CBE,根據(jù)全等三角形的對(duì)應(yīng)邊相等,得出CD=BE,AD=CE,從而求出線段AD、BE、DE之間的關(guān)系.進(jìn)而得到答案.
證明:(1)∵AD⊥CE,BE⊥CE,
∴∠ADC=∠CEB=90°,
又∵∠ACB=90°,
∴∠ACD=∠CBE=90°∠ECB.
在△ACD與△CBE中,
,
∴△ACD≌△CBE(AAS);
(2)∵△ACD≌△CBE,
∴CD=BE,AD=CE,
又∵CE=CDDE,
∴AD=BEDE,
∵AD=2,DE=3.5,
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)B、E分別在AC、DF上,AF分別交BD、CE于點(diǎn)M、N,∠A=∠F,∠1=∠2.
(1)求證:四邊形BCED是平行四邊形;
(2)已知DE=2,連接BN,若BN平分∠DBC,求CN的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將矩形紙片分別沿兩條不同的直線剪兩刀,可以使剪得的三塊紙片恰能拼成一個(gè)等腰三角形(不能有重疊和縫隙).小華的做法是:如圖1所示,在矩形ABCD中,分別取AD、AB、CD的中點(diǎn)P、E、F,并沿直線PE 、PF剪兩刀,所得的三部分可拼成等腰三角形△PMN (如圖2).
(1)在圖3中畫出另一種剪拼成等腰三角形的示意圖;
(2)以矩形ABCD的頂點(diǎn)B為原點(diǎn),BC所在直線為x軸建立平面直角坐標(biāo)系(如圖4),矩形ABCD剪拼后得到等腰三角形△PMN,點(diǎn)P在邊AD上(不與點(diǎn)A、D重合),點(diǎn)M、N在x軸上(點(diǎn)M在N的左邊).如果點(diǎn)D的坐標(biāo)為(5,8),直線PM的解析式為y=kx+b,求所有滿足條件的k的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB為⊙O的直徑,弦CF⊥AB于點(diǎn)E,CF=4,過(guò)點(diǎn)C作⊙O的切線交AB的延長(zhǎng)線于點(diǎn)D,∠D=30°,則OA的長(zhǎng)為( )
A. 2 B. 4 C. 4 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,∠ACB=90°,⊙O是△ABC的內(nèi)切圓,切點(diǎn)分別為D、E、F.連接DF并延長(zhǎng)交BC的延長(zhǎng)線于點(diǎn)G.
(1)求證:AF=GC;
(2)若BD=6,AD=4,求⊙O的半徑;
(3)在(2)的條件下,求圖中由弧EF與線段CF、CE圍成的陰影部分面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,如圖,在△ABC中,∠BAC=90°,AD⊥BC于D,∠ABC的平分線交AD于E,交AC于F,∠CAD的角平分線AG交BF于H,交DC于G.
(1)求證:AE=AF;
(2)判斷BF與AG的位置關(guān)系,并說(shuō)明理由.
(3)再找出二組相等的線段:① ; ② .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△AOB中,AB=OB=2,△COD中,CD=OC=3,∠ABO=∠DCO.連接AD、BC,點(diǎn)M、N、P分別為OA、OD、BC的中點(diǎn).
①若A、O、C三點(diǎn)在同一直線上,且∠ABO=2α,則 =_____(用含有α的式子表示);
②固定△AOB,將△COD繞點(diǎn)O旋轉(zhuǎn),PM最大值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在中,,,,點(diǎn)在所在的直線上運(yùn)動(dòng),作(、、按逆時(shí)針?lè)较颍?/span>
(1)如圖①,當(dāng)點(diǎn)在線段上運(yùn)動(dòng)時(shí),交于.
①求證:.
②當(dāng)是等腰三角形時(shí),直接寫出的長(zhǎng).
(2)如圖②,當(dāng)點(diǎn)在的延長(zhǎng)線上運(yùn)動(dòng),的反向延長(zhǎng)線與的延長(zhǎng)線相交于點(diǎn),是否存在點(diǎn),使是等腰三角形?若存在,寫出點(diǎn)的位置;若不存在,請(qǐng)簡(jiǎn)要說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,以原點(diǎn)O為圓心的圓過(guò)點(diǎn)A(,0),直線y=kx-2k+3與⊙O交于B、C兩點(diǎn),則弦BC的長(zhǎng)的最小值為_______.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com