【題目】在正方形ABCD中,點(diǎn)EBC邊上一動(dòng)點(diǎn),連接AE,沿AE將△ABE翻折得△AGE,連接DG,作△AGD的外接⊙O,⊙OAE于點(diǎn)F,連接FGFD

1)求證∠AGD=∠EFG;

2)求證△ADF∽△EGF;

3)若AB3,BE1,求⊙O的半徑.

【答案】1)見解析;(2)見解析;(3)⊙O的半徑為

【解析】

1)根據(jù)題目圖形可知,本題考查圓內(nèi)接四邊形的性質(zhì)應(yīng)用,可利用對角互補(bǔ)解題;同時(shí)根據(jù)題干翻折信息可推出邊等、角等信息,結(jié)合正方形ABCD邊等性質(zhì)即可解答;

2)本題需以第一問結(jié)論作為角互換的橋梁,同時(shí)考查正方形ABCD性質(zhì),利用其平行特征推出角等,結(jié)合翻折圖形性質(zhì)進(jìn)行角的互換,利用“角角”判定三角形相似;

3)本題考查正方形以及圓的綜合運(yùn)用,借助正方形內(nèi)角90°為媒介考查圓周角定理的運(yùn)用,同時(shí)需要觀察圖形特點(diǎn)構(gòu)造全等三角形,結(jié)合勾股定理求解邊長.

1)證明:∵四邊形AFGD是⊙O的內(nèi)接四邊形,

∴∠ADG+∠AFG180°,

∵∠AFG+∠EFG180°

∴∠ADG=∠EFG,

由正方形ABCD及翻折可得ABAGAD,

∴∠ADG=∠AGD

∴∠AGD=∠EFG

2)∵∠AGD=∠AFD,∠AGD=∠EFG

∴∠AFD=∠EFG,

∵四邊形ABCD是正方形,

ADBC

∴∠DAF=∠AEB

由翻折得∠AEB=∠GEF,

∴∠DAF=∠GEF,

∴△ADF∽△EGF

3)解:設(shè)⊙OCD交于點(diǎn)H,連接AHGH,如下圖所示

∵∠ADH90°,

AH是⊙O的直徑,

∴∠AGH90°,

由翻折得∠AGE90°,則∠AGE+∠AGH180°,

E、G、H三點(diǎn)在一條直線上.

AHAH,ADAG,∴RtADHRtAGH,∴GHDH

設(shè)GHDHx,則在RtECH中,CH3xEH1x,EC312

CH2EC2EH2,即(3x)222(1x)2,解得x,

RtADH中,AD2DH2AH2,即32()2AH2,解得AH,

∴⊙O的半徑為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】港珠澳大橋(英文名稱:Hong Kong-Zhuhai-Macao Bridge)是中國境內(nèi)一座連接香港、廣東珠海和澳門的橋隧工程,位于中國廣東省珠江口伶洋海域內(nèi),為珠江三角洲地區(qū)環(huán)線高速公路南環(huán)段.港珠澳大橋于日動(dòng)工建設(shè);于日實(shí)現(xiàn)主體工程全線貫通;于日完成主體工程驗(yàn)收;同年日上午時(shí)開通運(yùn)營.廣東某校數(shù)學(xué)“綜合與實(shí)踐”小組的同學(xué)把“測量港珠澳大橋某一段斜拉索頂端到橋面的距離”作為一項(xiàng)課題活動(dòng),他們制訂了測量方案,并利用課余時(shí)間完成該橋斜拉索實(shí)地測量,測量結(jié)果如下表

項(xiàng)目

內(nèi)容

課題

測量港珠澳大橋某一段斜拉索頂端到橋面的距離

測量示意圖


說明:兩側(cè)斜拉索相交于點(diǎn),分別與橋面交于兩點(diǎn),且點(diǎn),在同一豎直平面內(nèi)

測量數(shù)據(jù)

的度數(shù)

的度數(shù)

的長度

1)請幫助該小組根據(jù)上表中的測量數(shù)據(jù),求斜拉索頂端點(diǎn)的距離(參考數(shù)據(jù):,,,);

2)該小組要寫出一份完整的課題活動(dòng)報(bào)告,除上表的項(xiàng)目外,你認(rèn)為還需要補(bǔ)充哪些項(xiàng)目(寫出一個(gè)即可)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中,

1)如圖.分別過、兩點(diǎn)作經(jīng)過點(diǎn)的直線的垂線,垂足分別為、,求證:

2)如圖,是邊上一點(diǎn),,,求的值.

3)如圖,是邊延長線上一點(diǎn),,,直接寫出的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校在校園藝術(shù)節(jié)期間舉行學(xué)生書畫大賽活動(dòng),準(zhǔn)備購買甲、乙兩種文具,獎(jiǎng)勵(lì)在活動(dòng)中表現(xiàn)優(yōu)秀的學(xué)生.已知購買2個(gè)甲種文具、1個(gè)乙種文具共需花費(fèi)35元;購買1個(gè)甲種文具、3個(gè)乙種文具共需花費(fèi)30元.

1)求購買一個(gè)甲種文具、一個(gè)乙種文具各需多少元?

2)若學(xué)校計(jì)劃購買這兩種文具共120個(gè),投入資金不少于95元又不多于1000元,問有多少種購買方案?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解九年級(jí)女生體質(zhì)健康變化的情況,體育李老師本學(xué)期從九年級(jí)全體240名女生中隨機(jī)抽取20名女生進(jìn)行體質(zhì)測試,并調(diào)取這20名女生上學(xué)期的體質(zhì)測試成績進(jìn)行對比,李老師對兩次數(shù)據(jù)(成績)進(jìn)行整理、描述和分析.下面給出了部分信息.

a. 兩次測試成績(百分制)的頻數(shù)分布直方圖如下(數(shù)據(jù)分組:60x70,70x80,80x90,90x100):

b.成績在80x90的是:

上學(xué)期:80 81 85 85 85 86 88

本學(xué)期:80 82 83 86 86 86 88 89

c. 兩個(gè)學(xué)期樣本測試成績的平均數(shù)、中位數(shù)、眾數(shù)如下:

學(xué)期

平均數(shù)

中位數(shù)

眾數(shù)

上學(xué)期

84

a

85

本學(xué)期

b

c

d

根據(jù)以上信息,回答下列問題:

1)表中a的值是 ;

2)下列關(guān)于本學(xué)期樣本測試成績的結(jié)論:c86d86;成績的極差可能為41b有可能等于80.其中所有正確結(jié)論的序號(hào)是 ;

3)從兩個(gè)不同角度分析這20名女生從上學(xué)期到本學(xué)期體質(zhì)健康變化情況.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩人利用不同的交通工具,沿同一路線從A地出發(fā)前往B地,甲出發(fā)1h后,乙出發(fā),設(shè)甲與A地相距ykm),乙與A地相距ykm),甲離開A地的時(shí)間為xh),y,yx之間的函數(shù)圖象如圖所示.

1)甲的速度是   km/h;

2)當(dāng)1≤x≤5時(shí),求y關(guān)于x的函數(shù)關(guān)系式;

3)當(dāng)乙與A地相距240km時(shí),直接寫出甲與A地的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為了解本校九年級(jí)學(xué)生物理實(shí)驗(yàn)操作技能考查的備考情況,隨機(jī)抽取該年級(jí)部分學(xué)生進(jìn)行了一次測試,并根據(jù)中考標(biāo)準(zhǔn)按測試成績分成AB、CD四個(gè)等級(jí),繪制出以下兩幅不完整的統(tǒng)計(jì)圖,請根據(jù)圖中信息解答下列問題:

(1)本次抽取參加測試的學(xué)生為_____人,扇形統(tǒng)計(jì)圖中A等級(jí)所對的圓心角是____度;

(2)請補(bǔ)全條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖;

(3)若該校九年級(jí)男生有300人,請估計(jì)該校九年級(jí)學(xué)生物理實(shí)驗(yàn)操作成績?yōu)?/span>C等級(jí)的有____人.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著交通道路的不斷完善,帶動(dòng)了旅游業(yè)的發(fā)展,某市旅游景區(qū)有A、B、C、D、E等著名景點(diǎn),該市旅游部門統(tǒng)計(jì)繪制出2017年“五一”長假期間旅游情況統(tǒng)計(jì)圖,根據(jù)以下信息解答下列問題:

(1)2017年“五一”期間,該市周邊景點(diǎn)共接待游客 萬人,扇形統(tǒng)計(jì)圖中A景點(diǎn)所對應(yīng)的圓心角的度數(shù)是 ,并補(bǔ)全條形統(tǒng)計(jì)圖.

(2)根據(jù)近幾年到該市旅游人數(shù)增長趨勢,預(yù)計(jì)2018年“五一”節(jié)將有80萬游客選擇該市旅游,請估計(jì)有多少萬人會(huì)選擇去E景點(diǎn)旅游?

(3)甲、乙兩個(gè)旅行團(tuán)在A、B、D三個(gè)景點(diǎn)中,同時(shí)選擇去同一景點(diǎn)的概率是多少?請用畫樹狀圖或列表法加以說明,并列舉所用等可能的結(jié)果.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形的邊長為4,延長使,以為邊在上方作正方形,延長,連接、的中點(diǎn),連接分別與、交于點(diǎn)、.則下列結(jié)論:①;②;③;④.其中正確的結(jié)論有( )

A. 1個(gè)B. 2個(gè)C. 3個(gè)D. 4個(gè)

查看答案和解析>>

同步練習(xí)冊答案