【題目】中,

1)如圖.分別過兩點(diǎn)作經(jīng)過點(diǎn)的直線的垂線,垂足分別為、,求證:

2)如圖,是邊上一點(diǎn),,求的值.

3)如圖,是邊延長線上一點(diǎn),,,,,直接寫出的值.

【答案】1)見解析 (23

【解析】

1)由題意,只要證明△AMB∽△BNC,即可得到結(jié)論成立;

2)過點(diǎn)作點(diǎn),過點(diǎn),先證明,得到,再證明,即可得到結(jié)論成立;

3)作AGBEG,作CHBE于點(diǎn)H,先判斷出,再同(2)的方法,即可得出結(jié)論.

證明:(1):,

,

∴∠M=∠N=90°,∠1+∠3=90°,

∴∠1=∠2

;

2)過點(diǎn)作點(diǎn),過img src="http://thumb.zyjl.cn/questionBank/Upload/2020/07/22/04/8078862f/SYS202007220422182855736715_DA/SYS202007220422182855736715_DA.007.png" width="72" height="19" style="-aw-left-pos:0pt; -aw-rel-hpos:column; -aw-rel-vpos:paragraph; -aw-top-pos:0pt; -aw-wrap-type:inline" />點(diǎn),

,,

,

,

,

,

設(shè),,則,,

,

,

,

;

解得:,

3)如圖,作AGBEG,作CHBE于點(diǎn)H,

RtABC中,,

∵∠DEB=90°,

CHAGDE,

,
同(1)的方法得,△ABG∽△BCH
,
設(shè)BG=4mCH=3m,AG=4nBH=3n,
AB=AE,AGBE
EG=BG=4m,
GH=BG+BH=4m+3n
,
n=2m
EH=EG+GH=4m+4m+3n=8m+3n=8m+6m=14m,
RtCEH中,tanBEC=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,是一個(gè)圓柱體污水管道的橫截面,管道中有部分污水,污水液面橫截面寬度()污水管道直徑為則弦所對(duì)圓周角的大小為_____________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線的與軸交于點(diǎn),與軸交于點(diǎn),

1)求該拋物線的解析式及頂點(diǎn)的坐標(biāo);

2)若是線段上一動(dòng)點(diǎn),過軸的平行線交拋物線于點(diǎn),交于點(diǎn),設(shè)時(shí),的面積為.求關(guān)于的函數(shù)關(guān)系式;若有最大值,請(qǐng)求出的最大值,若沒有,請(qǐng)說明理由;

3)若軸上一個(gè)動(dòng)點(diǎn),過作射線交拋物線于點(diǎn),隨著點(diǎn)的運(yùn)動(dòng),在軸上是否存在這樣的點(diǎn),使以 、為頂點(diǎn)的四邊形為平行四邊形?若存在,請(qǐng)直接寫出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某海域有A、B、C三艘船正在捕魚作業(yè),C船突然出現(xiàn)故障,向A、B兩船發(fā)出緊急求救信號(hào),此時(shí)B船位于A船的北偏西72°方向,距A船24海里的海域,C船位于A船的北偏東33°方向,同時(shí)又位于B船的北偏東78°方向.

(1)求ABC的度數(shù);

(2)A船以每小時(shí)30海里的速度前去救援,問多長時(shí)間能到出事地點(diǎn).(結(jié)果精確到0.01小時(shí)).

(參考數(shù)據(jù):1.414,1.732)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線上有點(diǎn)、、、,且,,分別過點(diǎn)、、、作直線的垂線,交軸于點(diǎn)、、、,依次連接、、,得到,,,,則的面積為_______.(用含有正整數(shù)的式子表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,ABC=60°,PQ是對(duì)角線BD上的兩個(gè)動(dòng)點(diǎn),點(diǎn)P從點(diǎn)D出發(fā)沿BD方向以1cm/s的速度向點(diǎn)B運(yùn)動(dòng),運(yùn)動(dòng)終點(diǎn)為B;點(diǎn)Q從點(diǎn)B出發(fā)沿著BD的方向以2cm/s的速度向點(diǎn)D運(yùn)動(dòng),運(yùn)動(dòng)終點(diǎn)為D.兩點(diǎn)同時(shí)出發(fā),設(shè)運(yùn)動(dòng)時(shí)間為xs),以A、Q、C、P為頂點(diǎn)的圖形面積為ycm2),yx的函數(shù)圖像如圖所示,根據(jù)圖像回答下列問題:

1BD= ,a= ;

2)當(dāng)x為何值時(shí),以AQ、CP為頂點(diǎn)的圖形面積為4cm2?

3)在整個(gè)運(yùn)動(dòng)的過程中,若AQP為直角三角形,請(qǐng)直接寫出符合條件的所有x的值:.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將邊長為10的正三角形OAB放置于平面直角坐標(biāo)系xOy中,CAB邊上的動(dòng)點(diǎn)(不與端點(diǎn)A,B重合),作CDOB于點(diǎn)D,若點(diǎn)CD都在雙曲線y上(k0,x0),則k的值為(  )

A. 25B. 18 C. 9D. 9

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在正方形ABCD中,點(diǎn)EBC邊上一動(dòng)點(diǎn),連接AE,沿AE將△ABE翻折得△AGE,連接DG,作△AGD的外接⊙O,⊙OAE于點(diǎn)F,連接FGFD

1)求證∠AGD=∠EFG;

2)求證△ADF∽△EGF;

3)若AB3BE1,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長為2的正方形ABCD中,GAD延長線上的一點(diǎn),且DG=AD,動(dòng)點(diǎn)MA點(diǎn)出發(fā),以每秒1個(gè)單位的速度沿著ACG的路線向G點(diǎn)勻速運(yùn)動(dòng)(M不與AG重合),設(shè)運(yùn)動(dòng)時(shí)間為t秒,連接BM并延長交AGN

1)當(dāng)AM=_____________時(shí),ABM是以AB為底邊的等腰三角形;

2)當(dāng)點(diǎn)NAD邊上時(shí),若BNHNNH交∠CDG的平分線于H,求證:BN=HN

3)過點(diǎn)M分別作AB,AD的垂線,垂足分別為E,F,矩形AEMFACG重疊部分的面積為S,求St的函數(shù)關(guān)系式,并求S最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案