【題目】如圖1,對稱軸為直線x=的拋物線經(jīng)過B(2,0)、C(0,4)兩點(diǎn),拋物線與x軸的另一交點(diǎn)為A.
(1)求拋物線的解析式;
(2)若點(diǎn)P為第一象限內(nèi)拋物線上的一點(diǎn),設(shè)四邊形COBP的面積為S,求S的最大值;
(3)如圖2,若M是線段BC上一動點(diǎn),在x軸是否存在這樣的點(diǎn)Q,使△MQC為等腰三角形且△MQB為直角三角形?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,請說明理由.
【答案】(1);(2)6;(3)Q(,0).
【解析】
試題分析:(1)由對稱軸的對稱性得出點(diǎn)A的坐標(biāo),由待定系數(shù)法求出拋物線的解析式;
(2)作輔助線把四邊形COBP分成梯形和直角三角形,表示出面積S,化簡后是一個關(guān)于S的二次函數(shù),求最值即可;
(3)畫出符合條件的Q點(diǎn),只有一種,①利用平行相似得對應(yīng)高的比和對應(yīng)邊的比相等列比例式;②在直角△OCQ和直角△CQM利用勾股定理列方程;兩方程式組成方程組求解并取舍.
試題解析:(1)由對稱性得:A(﹣1,0),設(shè)拋物線的解析式為:y=a(x+1)(x﹣2),把C(0,4)代入:4=﹣2a,a=﹣2,∴y=﹣2(x+1)(x﹣2),∴拋物線的解析式為:;
(2)如圖1,設(shè)點(diǎn)P(m,),過P作PD⊥x軸,垂足為D,∴S=S梯形+S△PDB=,∴S==,∵﹣2<0,∴S有最大值,則S大=6;
(3)如圖2,存在這樣的點(diǎn)Q,使△MQC為等腰三角形且△MQB為直角三角形,理由是:
設(shè)直線BC的解析式為:y=kx+b,把B(2,0)、C(0,4)代入得:,解得:,∴直線BC的解析式為:y=﹣2x+4,設(shè)M(a,﹣2a+4),過A作AE⊥BC,垂足為E,則AE的解析式為:,則直線BC與直線AE的交點(diǎn)E(1.4,1.2),設(shè)Q(﹣x,0)(x>0),∵AE∥QM,∴△ABE∽△QBM,∴①,由勾股定理得:②,由①②得:=4(舍),=,當(dāng)a=時,x=,∴Q(,0).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AB=AC,∠BAC=2∠DAE=2α.
(1)如圖1,若點(diǎn)D關(guān)于直線AE的對稱點(diǎn)為F,求證:△ADF∽△ABC;
(2)如圖2,在(1)的條件下,若α=45°,求證:;
(3)如圖3,若α=45°,點(diǎn)E在BC的延長線上,則等式還能成立嗎?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線C:,直線l:y=kx(k>0),當(dāng)k=1時,拋物線C與直線l只有一個公共點(diǎn).
(1)求m的值;
(2)若直線l與拋物線C交于不同的兩點(diǎn)A,B,直線l與直線l1:y=﹣3x+b交于點(diǎn)P,且,求b的值;
(3)在(2)的條件下,設(shè)直線l1與y軸交于點(diǎn)Q,問:是否在實(shí)數(shù)k使S△APQ=S△BPQ?若存在,求k的值,若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】寫出一個一元一次方程,要求:解此方程時第一步必須是利用合并同類項(xiàng)法則合并同類項(xiàng).我寫的方程為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一次水災(zāi)中,大約有2.5×105個人無家可歸,假如一頂帳篷占地100米2 , 可以放置40個床位,為了安置所有無家可歸的人,需要多少頂帳篷?這些帳篷大約要占多少地方?估計你的學(xué)校的操場可安置多少人?要安置這些人,大約需要多少個這樣的操場?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,方格紙中每個小方格都是邊長為1個單位長度的正方形,在建立平面直角坐標(biāo)系后,△ABC
的頂點(diǎn)在格點(diǎn)上.且A(1,﹣4),B(5,﹣4),C(4,﹣1)
(1)畫出△ABC;
(2)求出△ABC的面積;
(3)若把△ABC向上平移2個單位長度,再向左平移
4個單位長度得到△A′B′C′,在圖中畫出△A′B′C′,并寫
出B′的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若關(guān)于x的一元二次方程(m-2)x2+5x+m2-2m=0的常數(shù)項(xiàng)為0,則m= ______ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,拋物線與x軸交于點(diǎn)A(m﹣2,0)和B(2m+3,0)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,連結(jié)BC.
(1)求m、n的值;
(2)如圖2,點(diǎn)N為拋物線上的一動點(diǎn),且位于直線BC上方,連接CN、BN.求△NBC面積的最大值;
(3)如圖3,點(diǎn)M、P分別為線段BC和線段OB上的動點(diǎn),連接PM、PC,是否存在這樣的點(diǎn)P,使△PCM為等腰三角形,△PMB為直角三角形同時成立?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com