【題目】如圖,一個(gè)質(zhì)地均勻的轉(zhuǎn)盤被分成3份,分別標(biāo)有數(shù)字1、2、3,其中標(biāo)有數(shù)字1、2的扇形的圓心角均為.轉(zhuǎn)動(dòng)轉(zhuǎn)盤,當(dāng)它自動(dòng)停止后,指針指向的數(shù)字即為轉(zhuǎn)出的數(shù)字,此時(shí)稱為轉(zhuǎn)動(dòng)轉(zhuǎn)盤一次(指針指向兩個(gè)扇形的分界線,則不計(jì)轉(zhuǎn)動(dòng)次數(shù)重新轉(zhuǎn)動(dòng)轉(zhuǎn)盤,直到指針指向一個(gè)扇形的內(nèi)部為止).
(1)轉(zhuǎn)動(dòng)轉(zhuǎn)盤一次,求轉(zhuǎn)出數(shù)字1的概率;
(2)轉(zhuǎn)動(dòng)轉(zhuǎn)盤兩次,用樹狀圖或列表法求這兩次轉(zhuǎn)出數(shù)字之積等于9的概率.
【答案】(1);(2).
【解析】
(1)數(shù)字1的扇形圓心角為90°,除以360°,即可得轉(zhuǎn)出數(shù)字1的概率;
(2)將數(shù)字3的扇形等分為2份,則圓被4等分,分別標(biāo)有數(shù)字1,2,3,3,再采用列表法列舉出轉(zhuǎn)兩次,數(shù)字之積所有等可能的結(jié)果,找出等于9的情況數(shù),利用概率公式即可求解.
(1)∵數(shù)字1的扇形圓心角為90°,
∴轉(zhuǎn)出數(shù)字1的概率=;
(2)如圖,將數(shù)字3的扇形等分為2份,則圓被4等分,分別標(biāo)有數(shù)字1,2,3,3,轉(zhuǎn)動(dòng)一次,四個(gè)數(shù)字出現(xiàn)的概率都為
轉(zhuǎn)動(dòng)兩次,數(shù)字之積所有等可能的結(jié)果列表如下:
1 | 2 | 3 | 3 | |
1 | 1×1=1 | 2×1=2 | 3×1=3 | 3×1=3 |
2 | 1×2=2 | 2×2=4 | 3×2=6 | 3×2=6 |
3 | 1×3=3 | 2×3=6 | 3×3=9 | 3×3=9 |
3 | 1×3=3 | 2×3=6 | 3×3=9 | 3×3=9 |
總共有16種等可能的情況,等于9有4種情況,
∴兩次轉(zhuǎn)出數(shù)字之積等于9的概率=
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在邊長為2的菱形中,,是邊的中點(diǎn),若線段繞點(diǎn)旋轉(zhuǎn)得線段,
(Ⅰ)如圖①,線段的長__________.
(Ⅱ)如圖②,連接,則長度的最小值是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在以點(diǎn)O為原點(diǎn)的平面直角坐標(biāo)系中,邊長為1的正方形OABC的兩頂點(diǎn)A,C分別在y軸,軸的正半軸上,現(xiàn)將正方形OABC繞點(diǎn)О順時(shí)針旋轉(zhuǎn),當(dāng)點(diǎn)A第一次落在直線上時(shí),停止轉(zhuǎn)動(dòng),旋轉(zhuǎn)過程中,AB邊交直線于點(diǎn)M,BC邊交軸于點(diǎn)N.
(1)旋轉(zhuǎn)停止時(shí)正方形旋轉(zhuǎn)的度數(shù)是_________.
(2)在旋轉(zhuǎn)過程中,當(dāng)MN和AC平行時(shí),
①與是否全等?此時(shí)正方形OABC旋轉(zhuǎn)的度數(shù)是多少?
②直接寫出的周長的值,并判斷這個(gè)值在正方形OABC的旋轉(zhuǎn)過程中是否發(fā)生變化.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=x2﹣4x﹣5與x軸交于A,B兩點(diǎn)(電B在點(diǎn)A的右側(cè)),與y軸交于點(diǎn)C,拋物線的對稱軸與x軸交于點(diǎn)D.
(1)求A,B,C三點(diǎn)的坐標(biāo)及拋物線的對稱軸.
(2)如圖1,點(diǎn)E(m,n)為拋物線上一點(diǎn),且2<m<5,過點(diǎn)E作EF∥x軸,交拋物線的對稱軸于點(diǎn)F,作EH⊥x軸于點(diǎn)H,求四邊形EHDF周長的最大值.
(3)如圖2,點(diǎn)P為拋物線對稱軸上一點(diǎn),是否存在點(diǎn)P,使以點(diǎn)P,B,C為頂點(diǎn)的三角形是直角三角形?若存在,請求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,以點(diǎn)A為圓心,AB長為半徑畫弧交AD于點(diǎn)F,再分別以點(diǎn)B、F為圓心,大于BF的相同長度為半徑畫弧,兩弧交于點(diǎn)P;連接AP并延長交BC于點(diǎn)E,連接EF.若四邊形ABEF的周長為16,∠C=60°,則四邊形ABEF的面積是___.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形的兩邊的長分別為3、8,是的中點(diǎn),反比例函數(shù)的圖象經(jīng)過點(diǎn),與交于點(diǎn).
(1)若點(diǎn)坐標(biāo)為,求的值;
(2)若,求反比例函數(shù)的表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC和Rt△BCD中,∠BAC=∠BDC=90°,BC=4,AB=AC,∠CBD=30°,M,N分別在BD,CD上,∠MAN=45°,則△DMN的周長為_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com