【題目】問題情境:如圖1,ABCD, ,.求度數(shù).

小明的思路是:如圖2,過PPEAB,通過平行線性質(zhì),可得 _______.

問題遷移:如圖3,ADBC,點P在射線OM上運動, ,

(1)當點PA、B兩點之間運動時, 、之間有何數(shù)量關系?請說明理由.

(2)如果點PAB兩點外側(cè)運動時(點P與點A、BO三點不重合),請你直接寫出、之間的數(shù)量關系.

【答案】;

(1),理由見解析;

(2)當點PB、O兩點之間時,

當點P在射線AM上時, .

【解析】試題分析:1)過PPEAB,通過平行線性質(zhì)求∠APC即可;(2)過PPEADCDE,推出ADPEBC,根據(jù)平行線的性質(zhì)得出∠α=DPE,β=CPE,即可得出答案;(3)畫出圖形,根據(jù)平行線的性質(zhì)得出∠α=DPEβ=CPE,即可得出答案.

試題解析:(1)過點PPEAB,

ABCD

PEABCD,

∴∠A+APE=180°,C+CPE=180°,

∵∠PAB=130°,PCD=120°,

∴∠APE=50°,CPE=60°

∴∠APC=APE+CPE=110°.

故答案為110°.

1)過PPQAD.

ADBC,

ADPQ ,

PQBC

PQAD

同理,

2(3)PBA延長線時,

CPD=βα;

PAB延長線時,

CPD=αβ.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=1,△A'B'C是由△ABC繞點C順時針旋轉(zhuǎn)所得,連接AB',且點A,B',A'在同一條直線上,則AA'的長為__.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】△ABC中,BC=a,AC=b,AB=c,若∠C=90°,如圖(1),根據(jù)勾股定理,則a2+b2=c2,若△ABC不是直角三角形,如圖(2)和圖(3),請你類比勾股定理,試猜想a2+b2與c2的關系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小亮早晨從家騎車到學校,先上坡后下坡,所行路程y(米)與時間x(分鐘)的關系如圖所示,若返回時上坡、下坡的速度仍與去時上、下坡的速度分別相同,則小明從學校騎車回家用的時間是________分鐘.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,定點A(﹣2,0),動點B在直線y=x上運動,當線段AB最短時,點B的坐標為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,點D,E,F分別是AB,BCCA的中點,AH是邊BC上的高.

1)試判斷線段DEFH之間的數(shù)量關系,并說明理由;

2)求證:∠DHF=DEF.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知∠1+2180°,∠3=∠B,試說明DEBC.下面是部分推導過程,請你在括號內(nèi)填上推導依據(jù)或內(nèi)容:

證明:∵∠1+2180°(已知)

1=∠4    

∴∠2+4180°(等量代換)

EHAB   

∴∠B      

∵∠3=∠B(已知)

∴∠3=∠EHC(等量代換)

DEBC    

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】2016年中考前,張老師為了解全市初三男生體育考試項目的選擇情況(每人限選一項),在全市范圍內(nèi)隨機調(diào)查了部分初三男生,將調(diào)查結(jié)果分成五類:A.推實心球(2kg);B.立定跳遠;C.半場運球;D.跳繩;E.其他,并將調(diào)查結(jié)果繪制成以下兩幅不完整的統(tǒng)計圖,請你根據(jù)統(tǒng)計圖解答下列問題:
(1)將上面的條形統(tǒng)計圖補充完整;
(2)假定全市初三畢業(yè)學生中有32000名男生,試估計全市初三男生中選半場運球的人數(shù)有多少人;
(3)甲、乙兩名初三男生在上述選擇率較高的三個項目:B.立定跳遠;C.半場運球;D.跳繩中各選一項,同時選擇半場運球、立定跳遠的概率是多少?請用列表法或畫樹形圖的方法加以說明并列出所有等可能的結(jié)果.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】鄰邊不相等的平行四邊形紙片,剪去一個菱形,余下的一個四邊形,稱為第一次操作;在余下的四邊形紙片中再剪去一個菱形,又余下一個四邊形,稱為第二次操作;…依此類推,若第n次操作余下的四邊形是菱形,則稱原平行四邊形為n階準菱形,如圖1,ABCD中,若AB=1,BC=2,則ABCD為1階準菱形.

(1)猜想與計算:
鄰邊長分別為3和5的平行四邊形是階準菱形;已知ABCD的鄰邊長分別為a,b(a>b),滿足a=8b+r,b=5r,請寫出ABCD是階準菱形.
(2)操作與推理:
小明為了剪去一個菱形,進行了如下操作:如圖2,把ABCD沿BE折疊(點E在AD上),使點A落在BC邊上的點F處,得到四邊形ABFE.請證明四邊形ABFE是菱形.

查看答案和解析>>

同步練習冊答案