【題目】如圖,在菱形ABCD中,點E,F,G,H分別是邊AB,BC,CD和DA的中點,連接EF,FG,GH和HE,若EH=2EF=2,則菱形ABCD的邊長為( )
A. B. 2 C. 2 D. 4
科目:初中數(shù)學 來源: 題型:
【題目】如圖,兩個直角和有公共頂點.下列結(jié)論:①;②;③若平分,則平分;④的平分線與的平分線是同一條射線.其中結(jié)論正確的個數(shù)是( )
A. 4個 B. 3個 C. 2個 D. 1個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,如圖,正方形的邊長為4厘米,點從點出發(fā),經(jīng)沿正方形的邊以2厘米/秒的速度運動;同時,點從點出發(fā)以1厘米/秒的速度沿向點運動,設(shè)運動時間為t秒,的面積為平方厘米.
(1)當時,的面積為__________平方厘米;
(2)求的長(用含的代數(shù)式表示);
(3)當點在線段上運動,且為等腰三角形時,求此時的值;
(4)求與之間的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,AB<BC.
(1)利用尺規(guī)作圖,在BC邊上確定點E,使點E到邊AB,AD的距離相等(不寫作法,保留作圖痕跡);
(2)若BC=8,CD=5,則CE= .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下列材料并解答問題:在一個三角形中,如果一個內(nèi)角的度數(shù)是另一個內(nèi)角度數(shù)的3倍,那么這樣的三角形我們稱為“3倍角三角形”例如:一個三角形三個內(nèi)角的度數(shù)分別是,這個三角形就是一個“3倍角三角形”.反之,若一個三角形是“3倍角三角形”,那么這個三角形的三個內(nèi)角中一定有一個內(nèi)角的度數(shù)是另一個內(nèi)角度數(shù)的3倍.
(1)如圖1,已知,在射線上取一點,過點作交于點.判斷是否是“3倍角三角形”,為什么?
(2)在(1)的條件下,以為端點畫射線,交線段于點(點不與點、點重合).若是“3倍角三角形”,求的度數(shù).
(3)如圖2,點在的邊上,連接,作的平分線交于點,在上取一點,使得,.若是“3倍角三角形”,求的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知E、F分別為正方形ABCD的邊AB,BC的中點,AF與DE交于點M,O為BD的中點,則下列結(jié)論:①∠AME=90°;②∠BAF=∠EDB;③∠BMO=90°;④MD=2AM=4EM;⑤AM=MF.其中正確結(jié)論的個數(shù)是( 。
A. 5個 B. 4個 C. 3個 D. 2個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】近期,我市持續(xù)出現(xiàn)霧霾天氣,給廣大市民的工作和生活造成了嚴重的影響.為此,“霧霾天氣的主要成因”就成為了某校環(huán)保小組調(diào)查研究的課題,他們隨機調(diào)查了部分市民,并對調(diào)查結(jié)果進行了整理,繪制了如圖所示的不完整的統(tǒng)計圖表.請根據(jù)圖表中提供的信息解答下列問題:
級別 | 觀點 | 頻數(shù)(人數(shù)) |
A | 大氣氣壓低,空氣不流動 | |
B | 地面灰塵大,空氣濕度低 | |
C | 汽車尾部排放 | |
D | 工廠造成污染 | |
E | 其他 |
調(diào)查結(jié)果扇形統(tǒng)計圖
(1)填空:______,______;
(2)求出扇形統(tǒng)計圖中E組所占的百分比以及扇形統(tǒng)計圖中區(qū)域D所對應(yīng)的扇形圓心角度數(shù);
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某中學學生步行到郊外旅行,七年級班學生組成前隊,步行速度為4千米小時,七班的學生組成后隊,速度為6千米小時;前隊出發(fā)1小時后,后隊才出發(fā),同時后隊派一名聯(lián)絡(luò)員騎自行車在兩隊之間不間斷地來回聯(lián)絡(luò),他騎車的速度為10千米小時.
后隊追上前隊需要多長時間?
后隊追上前隊的時間內(nèi),聯(lián)絡(luò)員走的路程是多少?
七年級班出發(fā)多少小時后兩隊相距2千米?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC中,∠B=90°,AB=16cm,BC=12cm,P、Q是△ABC邊上的兩個動點,其中點P從點A開始沿A→B方向運動,且速度為每秒1cm,點Q從點B開始沿B→C→A方向運動,且速度為每秒2cm,它們同時出發(fā),設(shè)出發(fā)的時間為t秒.
(1)出發(fā)2秒后,求PQ的長.
(2)當點Q在邊BC上運動時,出發(fā)幾秒鐘后,△PQB能形成等腰三角形?
(3)當點Q在邊CA上運動時,求能使△BCQ成為等腰三角形的運動時間.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com