【題目】長(zhǎng)城公司為希望小學(xué)捐贈(zèng)甲、乙兩種品牌的體育器材,甲品牌有A、B、C三種型號(hào),乙品牌有D、E兩種型號(hào),現(xiàn)要從甲、乙兩種品牌的器材中各選購(gòu)一種型號(hào)進(jìn)行捐贈(zèng).
(1)寫出所有的選購(gòu)方案(用列表法或樹狀圖);
(2)如果在上述選購(gòu)方案中,每種方案被選中的可能性相同,那么A型器材被選中的概率是多少?
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,點(diǎn)D、E、F分別在AB、BC、AC邊上,且BE=CF,BD=CE.
(1)求證:△DEF是等腰三角形;
(2)當(dāng)∠A=40°時(shí),求∠DEF的度數(shù);
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=AC,以AB為直徑的⊙O與BC相交于點(diǎn)D,與CA的延長(zhǎng)線相交于點(diǎn)E,過點(diǎn)D作DF⊥AC于點(diǎn)F.
(1)試說明DF是⊙O的切線;
(2)若AC=3AE,求 的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某工程隊(duì)準(zhǔn)備開挖一條隧道,為了縮短工期,必須在山的兩側(cè)同時(shí)開挖,為了確保兩側(cè)開挖的隧道在同一條直線上,測(cè)量人員在如圖所示的同一高度定出了兩個(gè)開挖點(diǎn)P和Q,然后在左邊定出開挖的方向線AP,為了準(zhǔn)確定出右邊開挖的方向線BQ,測(cè)量人員取一個(gè)可以同時(shí)看到點(diǎn)A,P,Q的點(diǎn)O,測(cè)得∠A=28°,∠AOC=100°,那么∠QBO應(yīng)等于多少度才能確保BQ與AP在同一條直線上?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將菱形紙片ABCD折疊,使點(diǎn)A恰好落在菱形的對(duì)稱中心O處,折痕為EF,若菱形ABCD的邊長(zhǎng)為2cm,∠A=120°,則EF=cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】田忌賽馬的故事為我們熟知.小亮與小齊學(xué)習(xí)概率初步知識(shí)后設(shè)計(jì)了如下游戲:小亮手中有方塊10、8、6三張撲克牌,小齊手中有方塊9、7、5三張撲克牌.每人從各自手中取出一張牌進(jìn)行比較,數(shù)字大的為本“局”獲勝,每次取得牌不能放回.
(1)若每人隨機(jī)取手中的一張牌進(jìn)行比賽,求小齊本“局”獲勝的概率;
(2)若比賽采用三局兩勝制,即勝2局或3局者為本次比賽獲勝者.當(dāng)小亮的三張牌出牌順序?yàn)橄瘸?,再出8,最后出10時(shí),小齊隨機(jī)出牌應(yīng)對(duì),求小齊本次比賽獲勝的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=8,BC=6,CD⊥AB于點(diǎn)D.點(diǎn)P從點(diǎn)D出發(fā),沿線段DC向點(diǎn)C運(yùn)動(dòng),點(diǎn)Q從點(diǎn)C出發(fā),沿線段CA向點(diǎn)A運(yùn)動(dòng),兩點(diǎn)同時(shí)出發(fā),速度都為每秒1個(gè)單位長(zhǎng)度,當(dāng)點(diǎn)P運(yùn)動(dòng)到C時(shí),兩點(diǎn)都停止.設(shè)運(yùn)動(dòng)時(shí)間為t秒.
(1)求線段CD的長(zhǎng);
(2)當(dāng)t為何值時(shí),△CPQ與△ABC相似?
(3)當(dāng)t為何值時(shí),△CPQ為等腰三角形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的方程x2﹣2(k﹣1)x+k2=0,
(1)當(dāng)k為何值時(shí),方程有實(shí)數(shù)根;
(2)設(shè)x1 , x2是方程的兩個(gè)實(shí)數(shù)根,且x12+x22=4,求k的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,D為AB的中點(diǎn),且AE∥CD,CE∥AB.
(1)證明:四邊形ADCE是菱形;
(2)若∠B=60°,BC=6,求菱形ADCE的高.(計(jì)算結(jié)果保留根號(hào))
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com