【題目】如圖,在RtABC中,∠C90°,BC2ACD,E,F分別為BC,AC,AB邊上的點,BF3AF,∠DFE90°,若△BDF與△FEA的面積比為32,則△CDE與△DEF的面積比為_____

【答案】512

【解析】

過點D、E分別作AB的垂線DG、EH,由BF3AF及△BDF與△FEA的面積比為32,可求得EHDG的數(shù)量關(guān)系,設(shè)FGxDGa,則BG2aAHa,EH2a,先證明△DFG∽△FEH,用xa表示出FH,再根據(jù)BF3AF,列出方程,用含a的式子表示出x,然后用含a的式子表示出相關(guān)線段,進而表示出△CDE與△DEF的面積,兩者相比即可得解.

解:如圖,過點DE分別作AB的垂線DG、EHAB于點G,H

BF3AF,△BDF與△FEA的面積比為32

EH2DG

∵∠C90°,BC2AC

tanB

BG2DG

設(shè)FGxDGa,則BG2a,AHaEH2a

AEa

∵∠DFE90°,

∴∠DFG+∠EFH90°

又∵∠FEH+∠EFH90°

∴∠DFG=∠FEH

又∵∠FGD=∠EHF90°

∴△DFG∽△FEH

FH

BF3AF

2a+x3a+

整理得:x2ax6a20

解得:x3ax=﹣2a(舍)

FHBA4AF4a+)=

∵∠C90°,BC2AC

ACBCAB12

AC,BC2AC

由勾股定理得:DFa,

EF

SDEFDFEF×a×

AC,BCAEa

CEACAE,CDCBBD

SCDECECD××

SCDESDEF512

故答案為:512

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知在平面直角坐標系xOy中,O為坐標原點,拋物線y=﹣x2+bx+c經(jīng)過原點,與x軸的另一個交點為A(﹣6,0),點C是拋物線的頂點,且⊙Cy軸相切,點P為⊙C上一動點.若點DPA的中點,連結(jié)OD,則OD的最大值是( 。

A.B.C.2D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】類比、轉(zhuǎn)化、從特殊到一般等思想方法,在數(shù)學學習和研究中經(jīng)常用到,如下是一個案例,請補充完整.

原題:如圖1,在平行四邊形ABCD中,點EBC的中點,點F是線段AE上一點,BF的延長線交射線CD于點G.若,求的值.

1)嘗試探究

在圖1中,過點EEHABBG于點H,則ABEH的數(shù)量關(guān)系是 ,CGEH的數(shù)量關(guān)系是 的值是

2)類比延伸

如圖2,在原題的條件下,若的值(用含有m的代數(shù)式表示).

3)拓展遷移

如圖3,梯形ABCD中,DCAB,點EBC的延長線上的一點,AEBD相交于點F ,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,點的坐標為,直線軸,軸分別交于點,,當軸上的動點到直線的距離與到點的距離之和最小時,則點的坐標是__________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關(guān)于x的一元二次方程x2﹣(2k+1x+4k30,

1)求證:無論k取什么實數(shù)值,該方程總有兩個不相等的實數(shù)根?

2)當RtABC的斜邊a,且兩條直角邊的長bc恰好是這個方程的兩個根時,求k的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)y=﹣x2+bx+c的圖象經(jīng)過點A20),B50),過點D0,)作y軸的垂線DP交圖象于E、F

1)求b、c的值和拋物線的頂點M的坐標;

2)求證:四邊形OAFE是平行四邊形;

3)將拋物線向左平移的過程中,拋物線的頂點記為M′,直線DP與拋物線的左交點為E′,連接OM′,OE′,當OE′+OM′的值最小時求直線OE′的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠ACB90°AC3,BC4,點DAB邊上一點,且AD1,點P從點C出發(fā),沿射線CA以每秒1個單位長度的速度運動,以CP、DP為鄰邊作CPDE.設(shè)CPDE和△ABC重疊部分圖形的面積為S(平方單位),點P的運動時間為t(秒)(t0

1)連結(jié)CD,求CD的長;

2)當CPDE為菱形時,求t的值;

3)求St之間的函數(shù)關(guān)系式;

4)將線段CD沿直線CE翻折得到線段C′D′.當點D′落在△ABC的邊上時,直接寫出t的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】把兩塊同樣大小的含角的三角板的直角重合并按圖1方式放置,點是兩塊三角板的邊的交點,將三角板繞點按順時針方向旋轉(zhuǎn)到圖2的位置,若,則點所走過的路程是_________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知⊙O的半徑為5,弦ABCD所對的圓心角分別是∠AOB,∠COD,下列說法正確的是( )①若∠AOB=∠COD,則CDAB;②若CDAB,則CD,AB所對的弧相等;③若CDAB,則點OCD,AB的距離相等;④若∠AOB+∠COD180°,且CD6,則AB8

A.①②③④B.①③④C.①②④D.③④

查看答案和解析>>

同步練習冊答案