【題目】規(guī)定:sin﹣x=﹣sinx,cos﹣x=cosx,sinx+y=sinxcosy+cosxsiny

據(jù)此判斷下列等式成立的是 (寫出所有正確的序號)

①cos﹣60°=﹣;

②sin75°=;

③sin2x=2sinxcosx

④sinx﹣y=sinxcosy﹣cosxsiny

【答案】②③④

【解析】

根據(jù)題意,得,①cos(60°)=cos60°= ,故錯誤;

sin75°=sin(45°+30°)=sin45°×cos30°+cos45°×sin30°= ,故正確;

sin2x=sinx﹒cosx+cosx·sinx=2sinx·cosx,故正確;

sin(xy)sinx·cos-y)+cosx·sin(-y)=sinx·cosy-cosx·siny,故正確,

故答案為:②③④.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,ABC的位置如圖,網(wǎng)格中小正方形的邊長為1,點A坐標為(12),請解答下列問題:

1)直接寫出點BC兩點的坐標;

2)將ABC向下平移3個單位得到A1B1C1,作出平移后的A1B1C1;

3)作出ABC繞點O的逆時針旋轉90°,得到A2B2C2,作出旋轉后的A2B2C2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一個圓形噴水池的中央豎直安裝了一個柱形噴水裝置OA,A處的噴頭向外噴水,水流在各個方向上沿形狀相同的拋物線路徑落下,水流噴出的高度ym)與水平距離xm)之間的關系式是x0

1)求水流噴出的最大高度是多少m?此時的水平距離是多少m;

2)若不計其他因素,水池的半徑OB至少為多少m,才能使噴出的水流不落在池外.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形是矩形,,,動點以每秒4個單位的速度從點沿線段點運動,同時動點以每秒6個單位的速度從點出發(fā)沿的方向運動,當點到達點,、同時停止運動,若記的面積為,運動時間為,則下列圖象中能大致表示,之間函數(shù)關系圖象的是( )

A.B.

C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線經(jīng)過點,,三點,與點關于軸對稱,是線段上的一個動點,設點的坐標為,過點軸的垂線交拋物線于點,交直線于點.

(1)求該拋物線所表示的二次函數(shù)的表達式;

(2)在點運動過程中,是否存在點,使得以為直徑的圓與軸相切?若存在,求出的值;若不存在,請說明理由;

(3)連接,繞平面內某點順時針旋轉,得到,、的對應點分別是點、.的兩個頂點恰好落在拋物線上,那么我們就稱這樣的點為“和諧點”, 那么我們就稱這樣的點為“和諧點”,請直接寫出“和諧點”的個數(shù)和點A1的橫坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)某學校智慧方園數(shù)學社團遇到這樣一個題目:

如圖1,在ABC中,點O在線段BC上,∠BAO=30°,OAC=75°,AO=,BO:CO=1:3,求AB的長.

經(jīng)過社團成員討論發(fā)現(xiàn),過點BBDAC,交AO的延長線于點D,通過構造ABD就可以解決問題(如圖2).

請回答:∠ADB=   °,AB=   

(2)請參考以上解決思路,解決問題:

如圖3,在四邊形ABCD中,對角線ACBD相交于點O,ACAD,AO=,ABC=ACB=75°,BO:OD=1:3,求DC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某課外興趣活動小組準備圍建一個矩形苗圃園,其中一邊靠墻,另外三邊周長為30米的籬笆圍成.已知墻長為18米(如圖所示),設這個苗圃園垂直于墻的一邊長為x米.

(1)若苗圃園的面積為72平方米,求x;

(2)若平行于墻的一邊長不小于8米,這個苗圃園的面積有最大值和最小值嗎?如果有,求出最大值和最小值;如果沒有,請說明理由;

(3)當這個苗圃園的面積不小于100平方米時,直接寫出x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明大學畢業(yè)回家鄉(xiāng)創(chuàng)業(yè)第一期培植盆景與花卉各50盆售后統(tǒng)計,盆景的平均每盆利潤是160,花卉的平均每盆利潤是19,調研發(fā)現(xiàn):

①盆景每增加1盆景的平均每盆利潤減少2;每減少1盆景的平均每盆利潤增加2;②花卉的平均每盆利潤始終不變.

小明計劃第二期培植盆景與花卉共100,設培植的盆景比第一期增加x第二期盆景與花卉售完后的利潤分別為W1,W2(單位元)

(1)用含x的代數(shù)式分別表示W1,W2;

(2)當x取何值時,第二期培植的盆景與花卉售完后獲得的總利潤W最大,最大總利潤是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,P是矩形ABCD內一點,連結P與矩形ABCD各頂點,矩形EFGH各頂點分別在邊AP,BPCP,DP上,已知AE2EP,EFAB,圖中兩塊陰影部分的面積和為S.則矩形ABCD的面積為( 。

A.4SB.6SC.12SD.18S

查看答案和解析>>

同步練習冊答案