【題目】如圖,一個圓形噴水池的中央豎直安裝了一個柱形噴水裝置OA,A處的噴頭向外噴水,水流在各個方向上沿形狀相同的拋物線路徑落下,水流噴出的高度ym)與水平距離xm)之間的關(guān)系式是x0

1)求水流噴出的最大高度是多少m?此時的水平距離是多少m

2)若不計其他因素,水池的半徑OB至少為多少m,才能使噴出的水流不落在池外.

【答案】(1);1;(2)2.5.

【解析】

1)求得拋物線的頂點坐標即可求得最大高度及水平距離;
2)令y=0,則可以求水池的半徑;

解:(1)∵y=﹣x2+2x+=﹣(x12+

∴該二次函數(shù)的頂點坐標為(1),

∴水流噴出的最大高度是米,此時的水平距離為1米;

2)令y0,則﹣(x12+0

解得x2.5x=﹣0.5(舍去)

所以花壇的半徑至少為2.5m,才能使噴出的水流不落在池外;

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在等腰Rt△ABCBAC=90°,EAC上(且不與點A、C重合.在ABC的外部作等腰Rt△CED,使CED=90°,連接AD,分別以AB,AD為鄰邊作平行四邊形ABFD,連接AF

1求證AEF是等腰直角三角形;

2如圖2CED繞點C逆時針旋轉(zhuǎn)當點E在線段BC上時,連接AE求證AF=AE;

3如圖3,CED繞點C繼續(xù)逆時針旋轉(zhuǎn),當平行四邊形ABFD為菱形,CEDABC的下方時AB=2,CE=2,求線段AE的長

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,AB=10cmBC=20cm,點PA開始沿AB邊向B點以1cm/s的速度移動,到達點B時停止.Q從點B開始沿BC邊向C點以2cm/s的速度移動,到達點C時停止.如果P、Q分別從A、B同時出發(fā),經(jīng)幾秒種△PBQ與△ABC相似?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中條直線為,直線軸于點,交軸于點,直線軸于點,過點軸的平行線交于點,點關(guān)于軸對稱,拋物線三點,下列判斷中:①;②;③拋物線關(guān)于直線對稱;④拋物線過點;⑤四邊形,其中正確的個數(shù)有( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校與圖書館在同一條筆直道路上。甲從學(xué)校去圖書館,乙從圖書館回學(xué)校,甲、乙兩人都勻速步行且同時出發(fā),乙先到達目的地。兩人之間的距離(米)與時間(分鐘)之間的函數(shù)關(guān)系如圖所示。

1)當____________分鐘時甲、乙兩人相遇,乙的速度為__________米/分鐘,點的坐標為_____________;

2)求出甲、乙兩人相遇后之間的函數(shù)關(guān)系式;

3)當乙到達距學(xué)校800米處時,求甲、乙兩人之間的距離。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,,,邊上的高,,兩邊分別交于點、,則( )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】今年10l日是中華人民共和國成立70周年的紀念日,天安門廣場進行了盛大的閱兵儀式,每一位中華兒女都感到無比驕傲和自豪,愛我中國,興我中華是每一位中華兒女的心聲,國慶放假期間,宸宸和點點兩位同學(xué)想觀看電影《我和我的祖國》,由于觀影人數(shù)較多,他們相約各自在網(wǎng)上購?fù)粓龃蔚钠,選座時只剩如圖所示的五個空座位了.

1)若宸宸隨機選擇座位,選擇座位1的概率為___________;(直接填空)

2)宸宸和點點各自隨機選擇座位(同一時間沒有其他人在線選票),用列表或畫樹狀圖的方法求兩位同學(xué)選擇的座位左右相鄰的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】規(guī)定:sin﹣x=﹣sinxcos﹣x=cosx,sinx+y=sinxcosy+cosxsiny

據(jù)此判斷下列等式成立的是 (寫出所有正確的序號)

①cos﹣60°=﹣;

②sin75°=;

③sin2x=2sinxcosx;

④sinx﹣y=sinxcosy﹣cosxsiny

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線x軸于點A,交y軸于點B,點Px軸上一動點,以點P為圓心,以1個單位長度為半徑作P,當P與直線AB相切時,點P的坐標是______________.

查看答案和解析>>

同步練習(xí)冊答案